

About This E-Book

EPUB is an open, industry-standard format for e-books. However,
support for EPUB and its many features varies across reading devices and
applications. Use your device or app settings to customize the presentation
to your liking. Settings that you can customize often include font, font size,
single or double column, landscape or portrait mode, and figures that you
can click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web
site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the e-book in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

Games, Design and Play
A Detailed Approach to Iterative Game Design

Colleen Macklin
John Sharp

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam
Cape Town • Dubai • London • Madrid • Milan • Munich • Paris
Montreal • Toronto • Delhi • Mexico City • São Paulo • Sydney

Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016938039
Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This
publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-134-39207-3
ISBN-10: 0-134-39207-8
Text printed in the United States on recycled paper.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

First printing, June 2016

Editor-in-Chief
Mark Taub
Senior Acquisitions Editor
Laura Lewin

Senior Development Editor
Chris Zahn

Managing Editor
John Fuller
Project Editors
Becky Winter,
Tracey Croom

Copy Editor
Gill Editorial Services

Indexer
John S. Lewis Indexing Services
Proofreader
Deborah Williams

Technical Reviewers
Naomi Clark
Chris Dodson
Merritt Kopas

Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith

Book Designer
Bumpy Design

Compositor
Danielle Foster

Praise for Games, Design and Play

“Sharp and Macklin break down the design process in detail from
concept to code to completion. What I particularly like about this
book is its inclusion of prototyping methods and design patterns
that are often overlooked by others. I suspect it will be helpful to
designers looking to break new ground outside the AAA space.”
—Brenda Romero, Game Designer, Romero Games

“There are many books you can read about games. But Games,
Design, and Play is something new. Colleen Macklin and John
Sharp don’t just explain what games are—they detail the game
design process itself.”

—Eric Zimmerman, Game Designer & Arts Professor, NYU
Game Center

“Game, Design and Play is a detailed, thoughtful, and well-
researched primer on the multifaceted discipline that is game
design.”

—Mare Sheppard, President, Metanet Software

“I’ve been studying and teaching game design for over a decade
and this is the first time I’ve read a book that catalogs so many
diverse aspects of the game design process. Colleen and John
dissect and examine games of all types (not just videogames) and
then expertly show you how to put all the pieces together to form
your own unique design.”
—Stone Librande, Lead Designer, Riot Games

“The authors share a wealth of experience, making for a text full of
great concepts, thorough process and applied practice. Throughout
they provide pertinent examples and use engaging exercises which
makes it useful, informative and insightful.”

—Drew Davidson, Director and Teaching Professor, Entertainment
Technology Center, Carnegie Mellon University

“This is a book that fills the much needed space between systems
thinking and play theory. Macklin and Sharp balance the process
with practicalities, in a way that is as timeless, enjoyable and
engaging as the games they discuss.”

—Lindsay Grace, Associate Professor and Founding Director,
American University Game Lab and Studio

“Anyone who seeks to learn or teach about games can use Games,
Design and Play as an insightful guide to ideas on how games
work, methodologies that help us create new experiences, and
pleasures found through play. Macklin and Sharp don’t seek to
restrictively define games or prescribe narrow rules of design.
Instead, their text offers a comprehensible yet flexible framework
for understanding games and play alongside practical processes for
imagining, prototyping, collaborating, and iterating during game
development. The approaches described in Games, Design and
Play are applicable to digital, analog, and hybrid games, and
thoroughly illustrated with examples from projects by small teams
or individuals. In a time when even large studios find value in
fostering small, agile teams, this kind of practical, beginning-to-end
handbook to creative development is invaluable.”
—Naomi Clark, Assistant Arts Professor, NYU Game Center and
Author of A Game Design Vocabulary

“This is one of the most comprehensive game design books to date.
It coalesces academic insights for helpful ways to think about
games and play, and guides the reader from scratch to production
with thorough advice and best practices drawn from examples of
recent, cutting edge independent games. I wish I had a text like this
available to me when I was first starting out in my career—it would
have made it much easier to come up with a framework for some of
the more outlandish ideas I had for games and to communicate
them to my teammates.”

—Anna Kipnis, Senior Gameplay Programmer, Double Fine
Productions

“Colleen Macklin and John Sharp deliver an impressive conceptual
and methodological approach to designing and producing games.
Perhaps most importantly, Games, Design and Play delivers a
message to designers that their games will go out into the world
and be part of society and culture. The approach is both rich and
approachable for undergraduate, graduate and aspiring game
developers alike.”

—Casey O’Donnell, Associate Professor, Michigan State
University and Author of Developer’s Dilemma

“If for some reason you’ve decided on a career in game
development, you could do a lot worse than Macklin and Sharp’s
book. While most texts on game design float in a vague sea of
buzzwords and nostalgia, Games, Design and Play is rooted in
example after example of real work being done by real game
artists. Books on game-making tend to fixate on the technical “how
to,” GD&P dabbles in the far more essential ‘why to.’”
—anna anthropy, Play Designer, Sorry Not Sorry Games

Contents at a Glance

Part I Concepts

1 Games, Design and Play

2 Basic Game Design Tools

3 The Kinds of Play

4 The Player Experience

Part II Process

5 The Iterative Game Design Process

6 Design Values

7 Game Design Documentation

8 Collaboration and Teamwork

Part III Practice

9 Conceptualizing Your Game

10 Prototyping Your Game

11 Playtesting Your Game

12 Evaluating Your Game

13 Moving from Design to Production

Works Cited

Glossary

Index

Contents

Preface

Acknowledgments

About the Authors

Part I Concepts

1 Games, Design and Play
The Basic Elements of Play Design
From Six Elements, Limitless Play Experiences
Getting from Here to There
Summary
Exercises

2 Basic Game Design Tools
Constraint
Direct and Indirect Actions
Goals
Challenge
Skill, Strategy, Chance, and Uncertainty
Decision-Making and Feedback
Abstraction
Theme
Storytelling
Context of Play
Summary
Exercises

3 The Kinds of Play
Competitive Play

Cooperative Play
Skill-Based Play
Experience-Based Play
Games of Chance and Uncertainty
Whimsical Play
Role-Playing
Performative Play
Expressive Play
Simulation-Based Play
Summary
Exercises

4 The Player Experience
Action Theory as a Framework
The Layers of a Play Experience

The Sensory Layer
The Information Layer
The Interaction Layer
The Frame Layer
The Purpose Layer

Summary
Exercises

Part II Process

5 The Iterative Game Design Process
The Origins of Iterative Design
The Four Steps

Step 1: Conceptualize
Step 2: Prototype
Step 3: Playtest
Step 4: Evaluate

A Repeated Process, Not a Single Cycle
Embracing Failure to Succeed
Summary
Exercise

6 Design Values
Generating Design Values

Example: Pong Design Values
Case Studies

Case Study 1: thatgamecompany’s Journey
Case Study 2: Captain Game’s Desert Golfing
Case Study 3: Naomi Clark’s Consentacle

Summary
Exercises

7 Game Design Documentation
The Game Design Document

Example: Pong Design Document
Schematics

Integrating Schematics into the Game Design Document
The Tracking Spreadsheet

Overview
For Discussion
Task List
Ongoing Responsibilities
Asset List
Completed Tasks

Summary
Exercise

8 Collaboration and Teamwork
Roles and Responsibilities

Alignment Versus Autonomy
Time and Resources
Team Agreements
Collaboration Tools
Running a Meeting
The Soft Skills of Collaboration
Resolving Differences
Understanding Failure
Summary

Part III Practice

9 Conceptualizing Your Game
Generating Ideas for Your Game
Brainstorming

Idea Speed-Dating
“How Might We...” Questions
Noun-Verb-Adjective Brainstorming

Motivations
Designing Around the Main Thing the Player Gets to Do
Designing Around Constraints
Designing Around a Story
Designing Around Personal Experiences
Abstracting the Real World
Designing Around the Player

Design Values Capture Motivations
Summary

10 Prototyping Your Game
Prototypes Are Playable Questions
Eight Kinds of Prototypes

Paper Prototypes

Physical Prototypes
Playable Prototypes
Art and Sound Prototypes
Interface Prototypes
Code/Tech Prototypes
Core Game Prototypes
Complete Game Prototypes

Documenting Your Prototypes
Summary

11 Playtesting Your Game
Six Kinds of Playtests

Internal Playtests
Game Developer Playtests
Friend and Family Playtests
Target Audience Playtests
New Player Playtests
Experienced Player Playtests

Matching Prototypes to Playtests
Preparing for a Playtest

Picking a Time and Place
Planning the Playtest
Capturing Feedback

Running a Playtest
Introduce
Observe
Listen
Discuss

After a Playtest
The Difference Between Input and Feedback

Summary

12 Evaluating Your Game
Reviewing Playtest Results
What to Think About
Interpreting Observations
Conceptualizing Solutions

Review
Incubate
Brainstorm
Decide
Document
Schedule

Summary

13 Moving from Design to Production
Case Study: The Metagame
Case Study: Johann Sebastian Joust
Case Study: The Path
Case Study: Queers in Love at the End of the World
How to Know When the Design Is Done
Getting Ready for Production
Summary

Works Cited

Glossary

Index

Preface

Games, Design and Play is a book that goes from a foundation in game
design concepts to the roll-your-sleeves-up work of actually designing a
game. With examples drawn from independently produced games, it’s also
a window into the process and thinking of actual game designers working to
further what games can do and express. It’s an exciting time in videogames
—and this book is your key to getting involved!
We’re Colleen Macklin and John Sharp, two game designers and educators.
This book is a distillation of all we have learned from designing games,
from the lessons of other game designers, and from the games we’ve played
and studied. Games, Design and Play also draws on our experiences in
other creative fields—DJing, VJing, graphic design, interaction design,
photography, even teaching. We’ve developed and honed an approach to
understanding games, play, and game design over our combined 35 years of
design and teaching experience, and we have worked hard to capture it
here.

Another Book on Game Design?
You might ask, “How is this book different from some of the other game
design books out there?” Indeed, there already are some very good books,
and we’ve been inspired by many of them. Our play-oriented approach is
very much in line with Tracy Fullerton’s Game Design Workshop,1 and we
have learned much from Katie Salen and Eric Zimmerman’s seminal game
design book, Rules of Play.2 anna anthropy and Naomi Clark’s A Game
Design Vocabulary3 influenced our approach to examples, not to mention
the influence their work as game designers and critics has on us.

1 Tracy Fullerton, Game Design Workshop. 3rd edition, 2014.
2 Katie Salen and Eric Zimmerman, Rules of Play, 2003.
3 anna anthropy and Naomi Clark, A Game Design Vocabulary: Exploring the Foundational

Principles Behind Good Game Design, 2014.

Even with all these great resources, we still found a gap. The primary thing
that Games, Design and Play does differently is in the details—literally.
Many game design books are fairly high level, considering games and game
design primarily from an abstract point of view. Or they describe an overall

game design methodology but don’t get into the details of game design and
the play experiences game designers create. Still other game design books
approach videogames from a computer-science perspective, using games as
a frame for learning game programming but skipping over the details of the
design and playtesting process.
Games, Design and Play differs in that it connects the conceptual and
design considerations of games with the process of actually designing a
videogame from start to finish, from idea to prototype to playtest and
finally, a fully realized design. To put it another way, Games, Design and
Play is a practitioner’s guide to designing games. It looks closely at games,
identifies how games work, and shows you how to design one from idea to
fully realized game.

Game Design, Game Development, and Game Production
While Games, Design and Play is a book that takes you through the details
of game design, there are certain things we left out—namely, game
development. This is a game design book, not a game development book.
What’s the difference? Game design is the practice of conceiving of and
creating the way a game works, including the core actions, themes, and
most importantly, the game’s play experience. Game design requires an
understanding of different kinds of games, how they work, and the
processes game designers use to create them.
Game development, on the other hand, encompasses the creation of the
game, including game design, programming, art production, writing, sound
design, level design, producing, testing, marketing, business development,
and more. These activities might correspond to roles on larger game
development teams, or in an independently made game, they might be
undertaken by one person or a small team. In this light, we will not be
addressing programming, modeling, animating, music scores, or any other
aspect of videogame development except as they relate to game design.
There are already some very good books that show you how to program
games, including Jeremy Gibson Bond’s Introduction to Game Design,
Prototyping, and Development.4 We also will show some bits of the art
production process, but not how to use art and animation production tools
like Photoshop and Maya. There are some great resources out there for that,
too, including The Gnomon Workshop’s video tutorials5 and books such as

Drawing Basics and Video Game Art6 by Chris Solarski and Paul Wells’
Understanding Animation.7 For sound design and production, we would
highly recommend Michael Sweet’s Writing Interactive Music for Video
Games: A Composer’s Guide.8

4 Jeremy Bond Gibson, Introduction to Game Design, Prototyping and Development, 2014.
5 The Gnomon Workshop, www.thegnomonworkshop.com/.
6 Chris Solarski, Drawing Basics and Video Game Art, 2012.
7 Paul Wells, Understanding Animation, 1998.
8 Michael Sweet, Writing Interactive Music for Video Games: A Composer’s Guide, 2014.

An important distinction to also make here is the difference between design
and production. Games, Design and Play is a detailed set of principles and
processes for understanding and designing games, but it only scratches the
surface of the production processes that happen once a game’s design is
complete. The relationship between architecture and construction is a useful
comparison. Architects design buildings, but they do not build them. The
building process is handled by engineers and construction crews.
Construction can’t happen, or at least can’t happen smoothly, until the
building is designed. The same goes for games—they need to be designed
before they can be produced. Game production is then the process of
producing the game indicated by the game’s design. As you work through
the book and the iterative game design methodology in Part III, “Practice,”
you will encounter some of the important aspects of production, but we
don’t go into anywhere near as much detail as we do on conceptualizing,
prototyping, playtesting, and evaluating a game’s design. As we mentioned
earlier, there are many good resources and tutorials out there for code, art
production, and sound, and often, in the production of your game, you will
find solutions to specific production problems by simply searching for them
online.

http://www.thegnomonworkshop.com/

Games By and For Everyone
Another important thing about this book: most of our examples come from
independently produced games made by small teams or individuals with
goals ranging from the commercial to the artistic. We focus on indie games
for a number of reasons. For one, these are often the most interesting and
diverse games. The scale of these games is also more realistic for
individuals and small teams. Changes in distribution and marketing over the
past decade have made it possible for individuals and small teams to create
and release games. On a personal level, we’re both involved in the
independent games community and have been for nearly a decade, so indie
games are what we know and love. Perhaps most important, these are the
kinds of games we make and play. The games we have made fit that
category and include everything from cardgames and sports to iPhone word
puzzle games and experimental arcade games.
Videogames are often organized into genres—platformers, shooters, sports
simulations, massively multiplayer online (MMOs), role-playing games
(RPGs), and so on. While we all enjoy particular genres, it isn’t how we
like to begin the design of our games. Genres can limit thinking, leading us
to think in terms of what play experiences we want to borrow or improve
instead of the play experiences we want to provide our players. Instead of
focusing on the kinds of play, genre tends to focus thinking on other games
in the same genre. We become hide-bound to the conventions, which keeps
us from thinking more inventively about play. This is why there are so
many indie platformers, stealth games, and mobile physics puzzle games:
we allow ourselves to get caught in genre traps. In this book, we prefer to
think about the kinds of play, not games circumscribed by genre.
This doesn’t mean that what you learn from this book can’t be applied in
large-scale game industry context. However, this aspect of game
development is often beholden to licensed content, sequels, and genres that
have become increasingly predictable. Games, Design and Play hopes to
show another path for gamemaking and provides a process that is play
focused, not product oriented. This may seem like a subtle distinction, but
it’s the key to creating game experiences that focus on the act of play,
unburdened from what a game normally is or is expected to be. Does this
mean that we think all AAA games are bad? Definitely not. Some break the
mold, and many are a lot of fun to play. But we also think that as

videogames continue to grow and mature as a medium, it’s important to
keep experimenting, trying new things, and pushing the boundaries.

You Are What You Play
This book is written from the perspective that games are an exciting art
form with a wide array of styles, forms, and messages. We’re interested in
games by and for everyone, not tied to a particular platform or console—
games that are digital, nondigital, and everything in-between. One reason
for focusing on all forms of games is that from a design standpoint, there’s
much to learn and apply between different kinds of games. Physical sports
can inspire videogames, and so can cardgames, boardgames, and
playground games like hide and seek and tag. And it’s a two-way street:
videogames can inspire nondigital game designs, too. The more kinds of
games we play, the more we learn and can apply to our own ideas.
One of the first things you will notice about this book is the emphasis on
play and play experiences. In fact, throughout the book we use gameplay
and play experience interchangeably. We do this to challenge our mind-set
about games. Instead of focusing on the idea that we are designing games,
we prefer to think about designing opportunities for play. By play, we mean
the thinking and actions that emerge when we engage with games. Or, we
mean the ways in which we engage with each other through the rules of the
game—devising creative strategies and solutions to the problems games
create for us, or enjoying the intersections of player participation and the
game’s images, sounds, and story. So in this book, we prioritize play as the
primary experience our games provide. We also think this is a really good
way to break out of expected genres and styles of games. By focusing on
designing play instead of designing a game, we can choose many different
approaches to take us there. We believe that thinking like this helps us
create better and more interesting play experiences for our players. We’ll
explore and expand on this throughout the book.

How This Book Works
We wanted to write a game design book that guides you through the entire
process of designing a videogame. When we teach an introductory game
design class—whether to our college students or young people through the
various curricula we’ve designed—we see how challenging it is to learn all
of the important concepts of games, from rules to goals to feedback
systems. Designing videogames adds a whole new set of challenges, from
coming up with an initial concept to creating the rules and goals of the
game to communicate your ideas, to testing and refining your design until
it’s solid. But these concepts and skills are all the nuts and bolts we need to
design play experiences. So, we’ve set out to include all of the parts we
think you’ll need to design a game from start to finish.
Games, Design and Play is divided into three parts: Part I, “Concepts,” Part
II, “Process,” and Part III, “Practice.” Part I takes you through the
definitions and principles of a play-based approach to game design. By the
end of Part I, you will have the terminology and conceptual framework for
understanding games and play from a game designer’s point of view. The
chapters in Part I include the following:

 Chapter 1, “Games, Design and Play,” explores the component parts
of games and considers how game designers use them to create play
experiences.
 Chapter 2, “Basic Game Design Tools,” looks more deeply at the
foundational principles of game design.
 Chapter 3, “The Kinds of Play,” examines the kinds of play games
provide.
 Chapter 4, “The Player Experience,” considers how players learn and
come to understand a videogame and what it is asking of them.

Part II, “Process,” steps outside the concepts of game design and looks at
some of the core processes and techniques through which the iterative game
design process unfolds. These chapters introduce important methods and
documents that will make the game design process smoother and more
enjoyable. The chapters in Part II include the following:

 Chapter 5, “The Iterative Game Design Process,” provides a quick
overview of the game design process.

 Chapter 6, “Design Values,” introduces an important tool for guiding
a game’s design through the iterative process, including three case
studies showing how design values can guide a game’s design.
 Chapter 7, “Game Design Documentation,” looks at the three main
documentation tools of game design: the design document,
schematics, and tracking spreadsheets.
 Chapter 8, “Collaboration and Teamwork,” covers the often-
overlooked but important considerations of collaborative projects,
including team agreements, and considerations for resolving team
conflicts.

Part III, “Practice,” then puts game design into action. The chapters move
through the iterative game design process of conceptualizing, prototyping,
playtesting, and evaluating the design of games as play machines. The
chapters in Part III include the following:

 Chapter 9, “Conceptualizing Your Game,” details techniques for
exploring and establishing ideas for a game’s design, including a
number of brainstorming methods and considerations for capturing
the designer’s motivations for creating a game.
 Chapter 10, “Prototyping Your Game,” moves into the intentions and
approaches to giving form to game design ideas through prototypes.
 Chapter 11, “Playtesting Your Game,” considers the role of
playtesting and lays out a series of approaches to playtesting
prototypes of a game’s design.
 Chapter 12, “Evaluating Your Game,” establishes the importance of
reflection on the results of playtests and provides a methodology for
making the most of playtesting feedback to improve a game’s design.
 Chapter 13, “Moving from Design to Production,” outlines a means
of determining when a game’s design is complete and looks at a series
of case studies that approach iterative game design in different ways.

Like our teaching, this book takes the old adage, “learn the rules before you
break them,” to heart. By focusing on a broad understanding of what games,
play, and design can be, those familiar with basic iterative processes will
likely see familiar patterns. We believe the best way to expand a discipline
is by first mastering its foundational principles. So we use the best practices
we’ve learned as designers and educators to show a tried-and-true path

through the design of play experiences. And as you master them, you’ll
likely want to tweak the process in small and large ways. This is to be
expected—we look forward to hearing how you have refined and revised
the principles, processes, and practices presented here.

The Beginning of Something
If this is your first time designing a game, we welcome you to what we
think is one of the most exciting creative practices around. Game design is
challenging, but it’s all worth it when you see your game being played and
enjoyed by people. If you’ve made games already, we hope this book offers
inspiration and some new ways to do things. And for teachers, we hope that
it is a useful addition to your classroom. It’s been playtested in ours and
we’re happy with the results. We hope you are, too. So let’s begin.

John Sharp and Colleen Macklin
Brooklyn, New York

Spring 2016

Acknowledgments

Game design is more often than not a collaborative effort. This book was no
different. Certainly, the two of us worked together on planning, writing,
editing, and so on, but there were many others involved, too. Thanks are
due to our external reviewers Naomi Clark, Chris Dodson, and Merritt
Kopas, whose feedback on in-progress drafts was essential in strengthening
the book. Jonathan Beilin worked with us on many of the details, while
Shuangshuang Huo’s photography is found throughout the book.
We must also thank our students at Parsons School of Design at The New
School who playtested the book with us over the past couple of years. And
before that, we thank our students over the past decade of teaching game
design—John’s students at the Savannah College of Art and Design-
Atlanta, and both of our students at Parsons.
Without the amazing games coming out of the many facets of indie games,
we wouldn’t have the material to write this book. A particular shout-out to
those who spent time talking with us about their approach to game design—
we really appreciate it. Our friend and business partner Eric Zimmerman
has shaped our thinking about games in big and small ways; his generosity
is deeply appreciated.
Last but certainly not least, John would like to thank Nancy for keeping the
joy fully stocked. And Colleen thanks Renee for being an enthusiastic
collaborator in the game of life.

About the Authors

Colleen Macklin is a game designer, interactive artist, and educator. Much
of her work focuses on social change and learning and the potential of play
for both.
John Sharp is a game designer, graphic designer, art historian, educator,
and curator. He makes games, teaches game and interaction design, and
researches and writes about games, design, art, and play.
Together, they are associate professors in the School of Art, Media, and
Technology at Parsons School of Design at The New School where they
codirect PETLab (Prototyping, Education, and Technology Lab), a research
group focused on games and game design as forms of social discourse.
Along with Eric Zimmerman, Colleen and John are members of the game
design collective Local No. 12, which makes games out of culture.

Part I: Concepts
 Chapter 1: Games, Design and Play
 Chapter 2: Basic Game Design Tools
 Chapter 3: The Kinds of Play
 Chapter 4: The Player Experience

Chapter 1. Games, Design and Play

The first step in learning any medium is understanding its basic elements. In
this chapter, we begin taking games apart to see how they work. We identify
the six basic elements of play design: actions, goals, rules, objects,
playspace, and players.
When we talk about playing games, we often talk about them in the same
way we do movies, books, and music—as a form of mass media. This isn’t a
surprise—since the rise of the Magnavox Odyssey, Pong, and the Atari VCS
in the 1970s, games have often been treated as simply another kind of
entertainment media. And videogames are the same in many ways—we
learn about, purchase, and experience games in quite similar ways to movies,
music, even books. But just because games are packaged, marketed, and sold
like the products of other mediums doesn’t mean they are conceived of,
designed, and produced the same way.
Let’s look past the marketing and distribution to the actual experience
videogames provide—play. But what does that mean, to play a videogame?
Is it like playing a movie? When you play a movie, you are watching a series
of prerecorded images and sounds. You may interpret a movie differently
when you watch it multiple times, or you may notice different shots,
characters, settings, or plot elements, but the movie itself doesn’t change.
But when we play a game, we aren’t just watching, reading, and listening
(though we do these things while playing). With games, players have to
interact, to be involved, for the game to happen.
This sounds more like playing music—as in performing it, not listening to it.
Musicians play music by following the notes the composer wrote.1 In games,
players do something similar—they follow the rules written by the game’s
designer. So playing music and playing games are a little more alike. When
playing music, you are following a score. In the same way a musician will
interpret a score and make it their own, players interpret and act inside a
game’s rules. There is one big difference between music and games, though
—games change based on player input in ways that music does not. In most
cases, a music score is static, but a game will change based on what the
player does. And as a result, gameplay experiences can be different almost

every time, sometimes in big ways, sometimes in ways that are barely
perceptible.

1 anna anthropy draws a similar analogy in Chapter 3 of her book, Rise of the Videogame
Zinesters: How Freaks, Normals, Amateurs, Artists, Dreamers, Drop-outs, Queers, Housewives,
and People Like You Are Taking Back an Art Form, using theater and the performance of a script.

When we talk about playing games, we are talking about players taking an
active role that has an impact on the substance and quality of the play
experience. In fact, you might say that a game doesn’t take form until it is
played. Take the game hopscotch (see Figure 1.1). By itself, it is at most
some lines on the ground and a rock or marker of some sort. But add a set of
rules and a couple of players, and it turns into a mechanism for generating
play. The drawn lines and the rock are explained in the rules, outlining how
players jump and throw the rock to see if they can hop through the
environment defined by the lines.

Figure 1.1 A hopscotch board.

This is how games work. The game itself is a process that produces play
when interacted with. Though we often think of games as being like movies,
comics, and music—art and entertainment media—they are also like pocket
knives, printing presses, and car engines. By this we mean that games are put
into motion by players in the same way these devices are; a pocket knife

won’t do much but sit there until someone picks it up and uses the little
scissors to trim a thread.
Thinking of games as machines is a systems dynamics approach to game
design—considering how the elements in a game come together to create
different dynamics. To get a better understanding of this, consider a familiar
machine—a car. A car as a system has objects (steering wheel, turn signal,
gas pedal) and dynamics (steer, signal, accelerate) that connect and interact
to make the car work. The relationships between these elements—their
dynamics, the inputs, and the different outputs they create—come together to
create the experience that is driving. A car can be operated in many ways. It
may have different types of inputs, such as the driver—a race car driver, a
student driver, a London taxi driver. Other inputs come from the
environmental conditions, the quality of the road, or other cars and
pedestrians. (Let’s hope not as a collision!) Depending on these inputs, the
car may be operated differently and result in different types of outputs. A fast
and wild ride on a racetrack, an awkward parallel parking job, a slow trip in
rush hour traffic. And that’s just one type of system. There are many, from
cars to computers to coffeemakers, each with its purposes, styles, and
outputs.
Instead of focusing on the stuff in the world, systems dynamics suggests we
should look at the actions and the interactions between the stuff. Systems are
made up of objects, which have relationships to one another, all of which are
driven by a function or a goal.2 A game is a kind of system. It takes inputs
and generates different kinds of outputs. The elements of the game interact
and produce different dynamics. In the case of hopscotch, the game’s design
crafts relationships between the drawn lines, the rock players throw, and the
rules that enable play. This structure is created by the game’s designer (or
designers in many cases, but we will get to that in Chapter 8, “Collaboration
and Teamwork”). Without the game design, the rock and lines are just that—
a rock and some lines. They are given meaning and purpose through the act
of crafting the rules and the configuration of the rock and the lines—in other
words, the act of game design. It’s the players that ultimately make the game
come to life, just as the interactions between things in the world create the
situations and events we live with. When viewing things through the lens of
systems, attention gets paid to not just the things, but the dynamic
relationships between them and what happens when they interact. And it is
the players that determine the purpose of their play experience. Players

might play hopscotch in order to move through the game the most quickly,
or to play with a flair that prioritizes style over speed. Or maybe they are
playing simply as a way to pass the time.

2 For more on systems dynamics, check out Donella Meadows’ excellent Thinking in Systems: A
Primer.

This is one of the ways we can think about games: games are systems that
dynamically generate play. Fast play, funny play, silly play, serious play,
expressive play, reflective play, competitive play, cooperative play—you
name a kind of physical, intellectual, and emotional response, and there are
games that produce it through play. This is true of all sorts of games, no
matter what they are—cardgames, boardgames, text adventures, mobile
games, sports, 3D games, and on and on.
While games are systems from the vantage point of systems thinking, they
are also works created to express, convey, and provide experiences. Games
are just as much about expression and experience as any other medium. This
suggests another way to approach games—as a form of expression closer to
poetry, literature, and art than to pocket knives and steam engines. Games
have style—visual, aural, written, experiential—and they create emotional
responses and experiences for players to reflect upon. We want to understand
games as things that generate experiences and different dynamics—in a
word, play. Hopscotch is illustrative: the system is composed of a few simple
rules, chalk and a rock produce exceptional experiences—jumping,
laughing, focused concentration, opportunities for performance, competition,
fellowship, and any number of other outcomes we wouldn’t expect from
such basic materials.
This is the real power of game design—creating play experiences that can
entertain, express, connect, cause reflection, and many other kinds of
thought and emotion. Part of what makes game design so much fun, but also
makes it so challenging, is that the game designer designs something—a
game—that produces something else—play. That play, in turn, generates
physical, intellectual, and emotional responses. These responses can only be
seen when the parts of the machine are assembled and the play begins. And
so in this book, we hope to explore how game design is the design of play by
keeping in mind how games generate play and how play in turn creates
experience and meaning.

The Basic Elements of Play Design
To begin understanding how games work as designed systems for generating
play, we need to identify the basic elements from which games are made.
The problem is, the parts differ from game to game in pretty drastic ways.
Even more perplexing, many of the parts are hidden from us or take an
intangible form. For example, a car engine (at least a classic car engine) can
be taken apart and understood by looking at the parts and how they operate
in relation to one another. On the other hand, a transistor radio is a bit more
difficult to decipher by just looking at its component parts. However, when
we play with a transistor radio, we get a pretty good sense of what it does, at
least at a higher level. When we turn the tuning knob, we find radio stations
at different frequencies. Move the antenna, and we pick them up more or
less clearly. We can adjust the volume. And when we move to a different
city, we receive different stations. Looking at the insides of the radio might
not tell us much about what this machine does, but fiddling around with it
helps us understand how it works and might even reveal other things related
to it, such as the properties of radio waves.
Some games are easy to take apart and see what’s there (car engines), and
some are more mysterious (radios). However, despite the many differences
in games, we can identify the six basic elements in games: actions, goals,
rules, objects, playspaces, and players. Rather than get too far into the
invisible realm of games, let’s look at a game with most of its elements
visible for us to see: football, or as we call it in the United States, soccer (see
Figure 1.2).

Figure 1.2 A soccer game.

The best place to start is with actions, as this is the most obvious designed
aspect of a game. Actions are the things players get to do while playing a
game. The main actions in soccer are kicking the ball and running on the
field (see Figure 1.2). These two core actions combine in interesting ways as
the teams try to get the ball in the other team’s goal. Around them emerge
other actions, like dribbling the ball or passing it from player to player.
What lets players know what actions they can perform? The rules define
what players are able to do—moving the ball with their feet, trying to get the
ball inside the net, playing within a limited period of time, and so on. A
game’s rules are equally concerned with what players cannot do. With
soccer, the most important limitation is banning the use of hands by all
players but the goalkeepers. In this respect, the rules governing actions in
games are about both permitting and limiting. Rules are the invisible
structure that holds a game together. We can’t see the rules of soccer without
checking a rules book, yet they are always present, defining the play
experience.
In games, rules are a source of player creativity, choice, and expression. This
might seem paradoxical because in most cases we think of rules as limiting
what we can do. However, the restrictions rules place upon players are also
what make games fun. Rules give us opportunities to try new things, develop

strategies, and find enjoyment within a play experience. Think of a fantastic
moment in a soccer game you’ve watched or played—an amazing bicycle
kick, or a well-timed tackle to stop an attempt to score, a kick that gracefully
arcs into the net. These are only possible because of the rules of the game.
That brings us to next basic element of games: goals. A game’s goal defines
what players try to achieve while playing. The actions and rules of a game
make more sense when we know the game’s goal. If soccer didn’t have the
stated goal of score the most goals in the allotted period of time, what would
the players do? Just kick the ball back and forth? More than likely, the
players would make up their own goals to give structure to their play. This is
what separates games from toys.3 By itself, outside the rules of the game, a
soccer ball is a toy. We can do whatever we want with it—throw it, kick it,
draw a face on it even. But inside a game, the ball and everything else take
on special meaning. Sometimes this meaning is to win, as in competitive
soccer, but sometimes it is simply to spend time with friends and family
during a backyard soccer game. In other cases, the goal is much more self-
directed, like trying to make a character in The Sims rich and famous or
building a replica of the Taj Mahal inside Minecraft. In other cases, the goal
is simply the experience of the game, like in Mattie Brice’s Mainichi, a game
created to provide a window into daily life.

3 The difference between games and toys (among other things) is thoughtfully described in Greg
Costikyan’s 1994 essay “I Have No Words & I Must Design” from the British role-playing
journal Interactive Fantasy.

Without the ball, soccer players would just be running around, and without
the two nets, they wouldn’t have a location for attempting to kick the ball or
to keep the ball out of. This brings us to the fourth basic element of games:
objects. Objects are the things players interact with during play. There are
two types of objects in soccer—the ball and the two nets at either end of the
field. In some games, resources are also objects in the game—such as
Monopoly money or the amount of health a videogame character has. To put
these objects into use and to help create physical and conceptual
relationships between them, there needs to be a playspace. In the case of
soccer, this is the field, the defined area within which the game takes place
and the objects are located. Together, the objects and the playspace
constitute the main physical, tangible elements of a game. Objects are
defined by a game’s rules and are necessary for the game to happen.

The last basic element of games is the players. They are part of the game’s
design, too, right? Without players, the ball and nets just sit there on the
field, and the rules are just words on a page. Players put the game that is
soccer into motion through their pursuit of the goals using actions and
objects within the playspace, all governed by the game’s rules. Players are
the most important part of any game, as they are the operator that makes the
game go.
We now have a working list of the “moving parts” of games and play
experiences: actions, goals, rules, objects, playspace, and players. Together,
these constitute the basic elements of game design.

From Six Elements, Limitless Play Experiences
Crafting the basic elements of the actions, goals, rules, objects, and
playspace and how they come together to create play—that’s the role of the
game designer. You make decisions about what kind of play experience you
want players to have, and you then design a game that will give players that
kind of experience.
Of course, not all games combine these elements in the same way. Take the
goals of a game. In soccer, the goal is to be the team with the most points
when time runs out. This drives the entire experience, at least in competitive
matches, putting everything else about the game in service of this goal. But
in a game like Exquisite Corpse (see Figure 1.3), the goal is to have an
experience rather than to compete. Exquisite Corpse begins with a folded
sheet of paper. The first player draws on one of the surfaces, making sure her
drawing slightly overlaps the adjacent panels. The paper is then refolded so
the next player has one of the mostly blank panels. Play continues until all
panels are drawn upon. The paper is then unfolded, and the players see the
image they collaboratively created. In the case of Exquisite Corpse, there is a
goal that shapes the play experience but in a less heavy-handed way. There’s
no score in Exquisite Corpse and no points to count. The goal is to create a
drawing together. So a goal can be the driving reason to play, as in soccer, or
simply a catalyst for a playful experience, like in Exquisite Corpse.

Figure 1.3 An Exquisite Corpse drawing.

Playspaces can take many forms as well, depending on the intended play
experience. The fields of sports, the materials of boardgames, the fantastic
environments of 3D videogames, the graph paper of tabletop role-playing
games—these are just a few of the kinds of playspaces our games can use.
The playspace of a game should be designed to encourage and support the
kind of play experience you want your players to have. If you want a
playspace that is mostly in the player’s imagination, you might consider a
simple, abstract map for tracking players’ collective discoveries. If you want
to provide players with a rich story world of your own design, you might
consider a more detailed 3D game.
The actions performed while playing a game can vary wildly, too, from
game to game. The most typical action of videogames is shooting. But really,
if we look more closely, the actions are much more granular and
interconnected: walking, running, and crawling; looking and hearing; aiming
and shooting. Games like The Chinese Room’s Dear Esther (see Figure 1.4)
show that these actions can be reconfigured to allow all sorts of other kinds
of play experiences. In Dear Esther, the player interacts with the game
through the standard first-person perspective. They look and move through a
designed space not unlike a full-scale movie set. Though the player aims
their view, they are never doing so to shoot. By removing this one action, the
designers of Dear Esther create a play experience focused on the exploration

of a storyworld that feels radically different, even though it lacks only one
standard action.

Figure 1.4 A screenshot from The Chinese Room’s Dear Esther.
Game designers determine the specifics of these core elements of a game,
but they have little control over what the player does with them while
playing the game. That is why the iterative game design process—
involving conceptualizing, prototyping, testing, and evaluating—is so
important. We will get into this more in Parts II and III of this book, but by
approaching game design as the design of play and focusing on what
happens when a game is put into motion, game designers can methodically
shape and refine the play experience of their games.
This is easier said than done. Game design produces second-order play
experiences for players. By this, we mean that game developers create the
game, but the player is the one who decides how, when, and why to play it.
Second-order design is a concept loosely borrowed from mathematics and
propositional logic. An equation is a proposition, and the insertion of
variables is first-order logic. Second-order logic is what emerges when the
variables begin to interact. In the context of game design, those variables are
the players and how they engage with a game. When do they play? Why do
they play? What do they do while playing? What do they feel while playing?

Unexpected outcomes emerge when a player plays within the dynamic
system of a game.
Katie Salen and Eric Zimmerman refer to this as the space of possibility of a
game4—the potential experiences a game designer creates through their
combination of objects, playspace, players, rules, actions, and goals. A
game’s space of possibility can be focused and specific about what the
player will do and experience, and it can be broad and open-ended. anna
anthropy’s Queers in Love at the End of the World is a text-based game in
which the player spends the last ten seconds before the world ends with her
partner. anna has defined the scenario as well as the options of what the
player can do within these precious seconds. There is limited time and a
limited number of actions to choose from. Queers in Love... has a defined
space of possibility because anna had a very specific kind of experience she
wanted to share with players. She was more interested in creating a focused
play experience that led to reflection than in creating a play experience that
offered an open-ended space of possibility for player actions.

4 Katie Salen and Eric Zimmerman, Rules of Play.

On the other hand, there is Minecraft, the open-ended sandbox in which
players collect materials so they can create things like buildings, vehicles,
and tools. This has led to an endless set of unexpected outcomes—scale
models of the Starship Enterprise, functioning rollercoasters, and replicas of
entire cities. The space of possibility in Minecraft is quite broad, allowing
players to develop their own goals. Even in this seemingly endless
possibility, there are limits, however. Players tend to create buildings and
vehicles but not sports or forms of life, for example.
In the case of anna anthropy’s text-based game Queers in Love at the End of
the World, the possibility space is narrow because anna has a particular
expression to convey to players. In Mojang’s Minecraft, the space of
possibility is so broad as to seem endless. This, ultimately, is what
approaching game design as play design is about—understanding that games
create spaces of possibility defined by player experience as much as by game
design. The more focused the designer wants the experience to be, the
smaller the space. The more the designer wants the players to develop their
own experience, the more open the space of possibility will be.
A game’s space of possibility is something we as players never really see in
complete form. Instead, it is a quasi-theoretical understanding of the many

play experiences players can have inside a game. The thing is, our
understanding of a game’s space of possibility is always changing. Take
basketball as an example. Until 1980, no one ever realized that it was
possible for a player to jump under the backboard in the space between the
rim and the baseline.5 But when Dr. J leapt from one side of the basket to the
other in that underneath space, suddenly a whole new set of possibilities was
added to the game.

5 Dr. J’s scoop shot is forever immortalized on YouTube (https://www.youtube.com/watch?
v=NjdEP7I2fRA) and in Dave Hickey’s classic essay, “The Heresy of Zone Defense,” published
in his book Air Guitar.

What lets a player understand a game’s space of possibility is game state.
Game state refers to a particular moment in the game—where the players
and objects are in the playspace, the current score, the progress toward
completing the game’s goal, and so on. Every time a game is played, it is
going to have a different sequence of states, as players will move through
their play experiences in different ways. This brings us back around to the
second-order nature of games. A game’s design is the creation of a space of
possibility that changes from moment to moment based on player input. In
real-time games in particular, the game state is in constant flux as play is
ongoing. In turn-based games, the state changes less frequently but is still in
motion and changing based on player engagement. This is what makes
games such a powerful medium—we as game designers create spaces of
possibility from the basic elements of games. And players, in turn, bring our
games to life through their play.

https://www.youtube.com/watch?v=NjdEP7I2fRA
https://www.youtube.com/watch?v=NjdEP7I2fRA

Getting from Here to There
Designing a game that creates a particular kind of play experience is much
easier said than done. This requires us to approach games as designers rather
than as players. Making the change from player to designer is not so
different from transitioning from being a sausage-eater to a sausage-maker—
seeing the messy behind-the-scenes work involved in the process can be
unsettling. The next three chapters of Part I, “Concepts,” look more closely
at games from a designer’s point of view. Together, these chapters create a
play-focused approach to game design. For those new to game design, the
chapters in Part I form an understanding of what game designers see and
think about when playing and making games. And for those already thinking
about games as a designer, these chapters provide our outlook on games as a
broad medium suitable for entertainment and expression alike.
Chapter 2, “Basic Game Design Tools,” focuses on the basic tools and
principles for shaping play experiences. We look at tools like constraint,
abstraction, decision-making, and theme to help us see how game designers
create a range of play experiences.
Chapter 3, “The Kinds of Play,” explores the types of play experiences we
can create for our players. This encourages designers to think about games
as play experiences rather than as media products. Competitive, cooperative,
chance-based, whimsical, performative, expressive, and simulation-based
play are all looked at in detail. We look at a variety of games in the process
to help us understand the incredible range of play experiences we can
provide our players.
Chapter 4, “The Player Experience,” examines the ways players perceive
games, how they make sense of the information encountered while playing,
how they decide what actions to take, and how they understand their role in
the game. In other words, this is what we ask of players during play
experiences.

Summary
When game designers think of games as frameworks for play experiences,
they recognize that games are generative. There are many kinds of games,
but they all share the same basic elements: actions, rules, goals, objects,
playspace, and players. These parts interact to generate play. As a designer,
the challenge of creating play experiences is that they represent a second-
order design problem: we are designing the play experience indirectly
through the game. But there are ways to accomplish this, and the upcoming
chapters will show you how.
The basic elements of games:

 Actions: The activities players carry out in pursuit of the game’s goals
 Goals: The outcome players try to achieve through their play, whether
they be measurable or purely experiential
 Rules: The instructions for how the game works
 Objects: The things players use to achieve the game’s goals
 Playspace: The space, defined by the rules, on which the game is
played
 Players: The operators of the game

Additional important concepts:
 Second-order design: Designing games is a second-order design
activity because we create the play experience indirectly through a
combination of rules, actions, and goals. The game only takes form
when activated by the player.
 Space of possibility: Because games are interactive, they provide for
players a variety of possible actions and interpretations. While a
designer can’t predetermine all the possible actions and experiences
players will have, they can limit or open up the space of possibility
through the game’s combination of actions, rules, goals, playspace, and
objects.
 Game state: The “snapshot” of the current status of game elements,
player progress through a game, and toward the game’s (or player’s)
goals. Game state is constantly in flux based on player engagement
with the game.

Exercises
1. Identify the basic elements in a game of your choice (actions, goals,

rules, objects, playspace, players).
2. As a thought experiment, swap one element between two games: a

single rule, one action, the goal, or the playspace. For example, what if
you applied the playspace of chess to basketball? Imagine how the
play experience would change based on this swap.

3. Pick a simple game you played as a child. Try to map out its space of
possibility, taking into account the goals, actions, objects, rules, and
playspace as the parameters inside of which you played the game. The
map might be a visual flowchart or a drawing trying to show the space
of possibility on a single screen or a moment in the game.

4. Pick a real-time game and a turn-based game. Observe people playing
each. Make a log of all the game states for each game. After you have
created the game state logs, review them to see how they show the
game’s space of possibility and how the basic elements interact.

Chapter 2. Basic Game Design Tools

One of the first things we do when learning a new field is to become familiar
with the tools of the trade. In this chapter we look at the core tools of game
design: constraint; direct and indirect interaction; goals; challenge; the
interplay of skill, strategy, chance and uncertainty; decision-making and
feedback; abstraction; theme; storytelling and context.
Now that we’ve identified the basic elements game designers work with in
the creation of games, the next step is considering the tools used to shape
and combine these elements into experiences for players. When you think
about tools, you probably think of game engines, animation tools,
programming languages, sound design, or 3D modeling software. These are
tools used as part of game design and development, but they aren’t what we
are talking about here. Game design tools aren’t like the wrenches or
screwdrivers you might think of for working on machines. Instead, the basic
tools of game design are more like the foundational principles of visual art—
symmetry, contrast and hierarchy, for example. This sort of tool helps
designers understand the parameters of game design in the same way that
color, line, form, and composition establish the basic parameters of visual
art.
There are ten basic tools for designing games: constraint; direct and indirect
interaction; goals; challenge; the interplay of skill, strategy, chance, and
uncertainty; decision-making and feedback; abstraction; theme; storytelling;
and context of play.

Constraint
Part of what makes games fun are the unusual ways they let us interact with
the world. If, in soccer, all players really wanted to do was put the ball in the
other team’s net, wouldn’t it be easier just to carry it there or maybe throw
it? Soccer players could certainly do that, but would it be much fun? By
constraining the way players can put the ball in the net using anything but
their hands, the goal suddenly becomes much more interesting. This is
constraint—putting limits on player actions and interactions with the
objects, other players, and the playspace with the intention of creating a play
experience.

When carefully designed, constraint provides more satisfying play
experiences. An important concept here is what Bernard Suits calls the
lusory attitude1—players are willing to accept, and even invite, less
efficient or logical means of engaging with a game in exchange for the
potential of the play experience. Constraint is one of the main ways to shape
a game’s actions to generate challenge, creative strategies, and engagement
for players.

1 Bernhard Suits, The Grasshopper: Games, Life and Utopia, 1978.

A great example of constraint in a videogame is Messhof’s Flywrench (see
Figure 2.1). It is a platformer with a twist—instead of running and jumping
through a horizontal landscape, the player flies a small ship through a
twisting and turning series of corridors and other environments. The ship’s
natural state is falling. But if it falls into a wall, the player dies. To keep
aloft, the player has to flap. This is the first constraint in the game—
navigating the ship to avoid bumping into walls and other obstacles.

Figure 2.1 A screenshot from Flywrench.

On top of this, the environment the player navigates is filled with barriers
and obstacles of different colors. To pass through them, the ship must be the
same color as the barrier or obstacle. Each state of the ship changes the
ship’s color—dropping is white, flapping is red, and spinning is green. So
not only does the player have to navigate the environment without touching

the walls, they also have to time the changing state of the ship to allow it to
pass through the barriers while keeping the ship moving in the right
direction. This is the second constraint—color-matching. Together, these two
design decisions create a layered set of constraints that establish the core
challenge of the game. (We’ll get more into challenge later in this chapter.)
Flywrench’s constraints are so finely tuned that the player needs to fail over
and over again to develop the skills to time their movements with micro-
twitch accuracy. Flywrench creates a fast and exciting play experience by
challenging players with tightly calibrated constraints on movement and
timing.
Another helpful example of constraint is Young Horses’ Octodad (see Figure
2.2). Instead of having a typical humanoid player character with a rigid
skeletal system, Octodad asks the player to maneuver and control a boneless,
floppy, handless octopus as he carries out mundane tasks. This constraint—
moving around a space and interacting with objects with a floppy octopus
body—creates a playfully frustrating experience for players as they mop the
floor or clean the refrigerator. This is very close to Suit’s example of the
lusory attitude—golf. Why use expensive sticks to knock a ball in a hole if
you could carry it there more easily with your hands? Or, in Octodad, why
use a floppy suit-wearing octopus when you could use a traditional person?
In both cases, it is because of the experience the games provide.

Figure 2.2 A screenshot from Octodad.

Yet one more approach to constraint is found in Shawn Allen’s Treachery in
Beatdown City (see Figure 2.3). The game is a mix of turn-based combat and
1990s scrolling beat-em ups. Players have to juggle resource collection,
move selection, and hand-to-hand combat in a way that pulls their attention
in multiple directions. The role of time in making all these decisions is one
way in which Shawn works with constraint—players needing to make
choices around the timing of their actions. Another way constraint comes
into play is the interaction of two play types (a concept we’ll look at more
closely in Chapter 3, “The Kinds of Play”). By interleaving two styles of
play—turn-based combat and a real-time beat-em up fighting game—the
player is confronted with actions and goals that run against expectation.

Figure 2.3 A screenshot from Treachery in Beatdown City.

In many ways, constraint is the “secret sauce” of game design. Much of the
satisfaction we derive from playing games comes from well-designed
constraints. This often involves coming up with unexpectedly satisfying
limitations that turn everyday objects, activities, and spaces into something
new and exciting. In the case of Flywrench, it is a constraint of precise
movement and timing, and in Octodad, it is a constraint of unorthodox and
awkward control. With Treachery in Beatdown City, it is constraint of time
and of unexpected play types.

Direct and Indirect Actions
When talking about constraint and goals, we’re more often than not thinking
about the actions players perform during play. An important pair of tools
game designers use to shape play experiences are direct and indirect actions.
Direct actions are those in which the player has immediate interaction with
objects and the playspace, while indirect actions are those that occur
without direct contact by the player or the primary objects they use while
playing. Pinball serves as a great example here (see Figure 2.4). Players
directly interact with the ball through the use of flippers. At the same time,
players indirectly interact with the bumpers, ramps, holes, and other features
by hitting the ball with the flippers. If a player hits the ball at a bumper, it is
going to bounce off in predictable but not completely knowable ways due to
the mechanical push triggered by the ball’s impact. The player might directly
act on the ball by hitting it at a precise time with the paddle, but ultimately
this leads to a variety of indirect actions as the physics of the ball and other
objects in the pinball game interact. So hitting the ball with a flipper might
lead to the ball passing under a spinner at the entrance to a ramp, which will
add to a score multiplier, which increases the value of the trip around the
ramp. All of these related events and chain reactions emerge from a single
hit of the ball with a flipper. This is one of the ways in which players can set
into motion effects both anticipated and unexpected within a game.

Figure 2.4 A game of pinball.

These stacked interactions of objects speak to the importance of designing
the implications of how different objects interact with one another within the
playspace. Designers have to think about the characteristics of the objects
and what these properties may cause to happen within the game’s space of
possibility. Done well, the relationship between direct and indirect actions
can create a dynamic sense of engagement with a game. Secret Crush’s
SUNBURN! (see Figure 2.5) is a great example of this kind of dynamic
system. In the game, the player controls the captain of a spaceship that just
exploded deep in outer space. All the ship’s crew has made a pact to die
together, so the captain must jump from planet to planet to gather the crew
together and then plunge them all into the sun. To do this, the captain must
interact with the planets and their gravitational pulls and the stretchy bungee
cord that connects the captain to the crew members. The properties of the
planets, the sun, the rope, and the crew members interact in ways that are
mostly out of the control of the player. Because of this, the player must
observe how their direct actions lead to indirect interactions between the
other objects to make sure they are able to successfully complete each level.

Figure 2.5 A screenshot from SUNBURN!.
A different way to think about direct and indirect action comes from Ed Key
and David Kanaga’s Proteus (see Figure 2.6). Like pinball and SUNBURN!,
similar cascading actions occur in the game, but less in pursuit of player
goals and more in the spirit of experiencing a world that seems alive. In
Proteus, the player explores a pixelated island in first-person view. There are
no clear goals or threats, so the player is left to explore and find out what
happens. As they move, their presence affects other creatures and
phenomena in the world. When the player approaches what looks like some
little frogs, the creatures hop away, generating a set of tones. When the
player sits still, elements in the environment change, and in special locations,
they experience new sounds and images. All of these events are indirectly
triggered by their presence; the player’s only direct actions are movement or
non-movement and where the player looks. Ultimately, the player’s
movements “play” the island, like a musician plays a score, triggering visual
and audio events to bring the island to life, setting off cascading effects in
the world.

Figure 2.6 A screenshot from Proteus.

The concepts of direct and indirect actions are the tools game designers use
to create unexpected outcomes in games. A balance between the two can
provide players with a sense of individual agency through direct action and
through indirect action, creating a dynamic, interactive system to play
within. The more direct actions a player has access to, the more fine-tuned
the player’s control can be of their experience. With more indirect actions,
there is less control but a greater sense of discovery with how the world
works.

Goals
As we discussed in Chapter 1, “Games, Design and Play,” the goal of a game
gives shape and purpose to what the players are trying to achieve while
playing. Sometimes the goals are quantifiable, and therefore strong, while in
other cases, they are experiential and loose. Without a goal, players won’t
know to what end they are following the rules. Soccer is an example of a
quantifiable, and therefore strong, goal—one that guides and gives purpose
to the play experience. On the other end of the spectrum is Jane Friedhoff’s
Slam City Oracles (see Figure 2.7). Players take on the role of one of two
young girls in a world filled with snack food, fantastic buildings, pinwheels,
and other quirky objects. The goal? Bounce around the environment with a
friend, and in the process knock things around—riot grrrls in a perfectly
playful world. The player can bounce higher and higher or just stick around
one area and slam to their heart’s content. While there is a score, it is
intentionally complex with absurdly high numbers that provide humor more
than a measure of player performance. For a player of Slam City Oracles, the
outcome isn’t the focus; it’s the process of getting there and the different
things that happen along the way.

Figure 2.7 A screenshot from Slam City Oracles.

A middle ground between Soccer and Slam City Oracles is Liam Burke’s
Dog Eat Dog (see Figure 2.8), a paper-and-pencil role-playing game. Instead

of a clearly stated quantifiable goal that drives the play experience, Dog Eat
Dog explores ideas around colonization and what happens to cultures when
they are confronted with external cultural forces. And instead of loose
experiential goals, Dog Eat Dog provides structure and quantifiable
outcomes, but those outcomes are not the focus of the play, and to call them
goals might be stretching the definition. Instead, they are outcomes that
provide a way of ending the story, giving players a sense of how their
performance in the game led to the fate of the characters and the island.

Figure 2.8 A game of Dog Eat Dog.
Play begins with players naming and creating a set of traits for their fictional
Pacific islands nation and then doing the same for the colonizing nation.
Players are given one rule to start:

The natives are inferior to the occupation people.
Players then add to this a list of rules that are followed in the engagement
between the two cultures. As an asymmetrical game, one player takes on the
role of the occupying nation, while all others play the role of natives to the
country. Players take turns setting up scenes in which two or more of the
characters engage in a situation. If in the course of the scene a disagreement
occurs about what is happening or how things resolve within a given
situation, then the rules come into play to help resolve them. At the end of
scenes, judgment is passed on whether everyone followed the rules, with

coins taken and received to account for everyone’s behavior. The Natives
then add one new rule to the list, and the next scene begins. Play continues
until one side runs out of tokens. At that point, players recount the epilogue,
which tells the story of how the occupied nation fared. If the Occupation
ended the game without tokens, then the epilogue should recount how and
why the occupying nation gave the power back to the Natives. If one of the
Natives ended without tokens, then the Natives should talk about how the
occupation impacted them. After all the epilogues are stated, the players still
holding tokens decide the final fate of the islands.
As a group, players tell a story together. At the same time, each player
manages their tokens so that they can define how the end of story is told.
The purpose of the game’s experience is the unfolding story, from beginning
to the end. In the case of Dog Eat Dog, there is a quantifiable goal
articulated by the tokens, one that delineates the end state of the game, but it
is not the focus or purpose of the play experience. The experience is the real
drive, and the goal is simply a catalyst to allow that experience to unfold.
Games can also have layered goals. Take Tale of Tales’ Sunset (see Figure
2.9). Players take on the role of Angela Burnes, a housekeeper for a wealthy
man living in a fictional country in the middle of a civil war. The game
consists of a series of days, each with a different list of housekeeping tasks
for Angela to complete. Each subtask—wash the windows, unpack a few
boxes, wash dishes—is necessary to complete as part of the larger goal of a
day’s work. The overarching goal is to complete Angela’s assignment at the
house, which is done by completing the smaller goals within a given day. In
the case of Sunset, there are three layers of goals: complete an assigned task,
finish a day’s task list, and complete the game. But these more structured
goals build to the experience of the game’s story. And so in this way,
Sunset’s structured goals build toward a looser experiential goal—learn
about Angela’s life.

Figure 2.9 A screenshot from Sunset.

Goals are a really useful tool for game designers. They are one of the only
ways we can guide players’ experiences in engaging with the actions,
objects, and playspaces we design. A game’s goal frames the play
experience, suggesting to players how they might engage the game. The
goals shape the space of possibility for players. A game’s goals also shape
how players perceive the available actions and objects within the playspace.
Do they approach them as a means to an end or simply as an experience unto
themselves?

Challenge
One of the things that designers use to craft a player’s experience of trying to
reach their goal is challenge. All games provide some level of challenge,
even if the players provide it themselves. Challenge is often described in
relation to the psychologist Mihaly Csikszentmihalyi’s idea of the flow
state.2 For Csikszentmihalyi, flow is described as a state of high focus and
enjoyment. Perhaps most famous is his chart of the flow state, showing the
“flow channel” between anxiety and boredom, rising with skill and
challenge (see Figure 2.10).

2 Mihaly Csikszentmihalyi, Creativity: Flow and the Psychology of Discovery and Invention, New
York: Harper Perennial. 1996.

Figure 2.10 A representation of the flow state.
Many game designers use the concept of flow state to describe an ideal
difficulty for level design, increasing the challenge to fit evolving player
skill by just the right amount to avoid spiking into the anxiety zone or
plummeting toward boredom.
Certainly, flow can be a useful concept for game designers, but here’s a word
of caution about the idea of flow. It can be tempting to correlate a state of
flow with good game design, but just as many movies might provide us with
an escape from ordinary life or a happy ending, not all movies need to be
that way. Sometimes great films are made about ordinary life; or their
endings aren’t happy. For games, flow is a response to challenge meeting the
player’s skill level, and it creates a kind of play that can be highly satisfying.
But equally satisfying are games that don’t challenge players’ skill. Instead,
the game might confront the player with a challenging narrative or an
experience that the player can enjoy regardless of skill. So, flow can be
experienced in games, but it’s not the only kind of experience players can

have in games, and it’s not better than other kinds of experiences. The flow
state is simply something the game designer might try to develop for or
might not. It really depends on the values the designer wants to explore with
their game. We’ll get more to this idea of design values in Chapter 6,
“Design Values.”
An alternate concept to flow that emerges from challenge is absorption.
Players can become deeply engaged in their play experience, but not in a
way that is about a single state of being like flow suggests. A good example
of absorption comes from the folkgame ninja (see Figure 2.11). Players
gather in a circle an arm’s length apart. The game begins when all players
freeze in a “ninja” pose. Players then take turns trying to hit the hand of an
adjacent player in one smooth movement ending in a new ninja pose. The
player who is attacked can move only the hand aimed at by the attacker. The
game tends to pull players deep into the game, taking on the silly premise of
ninja-posing without self-conscious worries. In other words, the players
become absorbed in the game and give themselves over to it in the spirit of
Bernard Suits’ lusory attitude discussed in earlier in this chapter.

Figure 2.11 A game of ninja. Photo by Scott Chamberlin / Elliot Trinidad.
Used with permission of the IndieCade International Festival of

Independent Games.

The point of this digression into flow and absorption is to simply say that
challenge can generate these—and other—kinds of experiences with games,
but that challenge, as a tool, can be used in varying degrees and for a variety
of purposes. One purpose, which we will touch on later, is to encourage
player skill development. As players encounter new and increasing
challenges in a game, they must get better at overcoming them. This entails
developing one’s skill at the actions in the game. Another kind of challenge
can be to achieve the goal of the game. In soccer, it can be to score the most
points by the end of the time, for instance. Another kind of challenge might
be found in the content of the game; the game might provide players with
content that challenges their notions of gender, for instance.
Lea Schönfelder and Peter Lu’s Perfect Woman (see Figure 2.12) is a good
example of all three kinds of challenge (skill, goal, and content). Perfect
Woman is a game using computer vision (the Kinect) that provides the player
with the (almost impossible) goals of trying to attain exceptional personal,

professional, and familial success defined by the “lean in” lives expected of
many 21st century women. To do so, the player is asked to strike
increasingly difficult poses with their own body to match the body of their
in-game character, and ultimately, to attain their life goals. Instead of
difficulty being determined solely by player skill moving through each level,
it is also based on the choices players make during the game during different
life stages. For example, if the player chooses to be a street kid in the
beginning of the game, it will be very difficult for her to attain the correct
pose for a rich woman later in life. But if they chose princess, it will be
easier. As Lea Schönfelder describes it:

“...it is almost impossible for the player to always live their ‘perfect
life.’ It may be okay for a while, but eventually your life history will
catch up to you and you will have a real conflict with all the
different aspects of your life that ‘need to be perfect,’ such as work,
family, friends, individuality, health, to name a few.”3

3 Gamasutra, “Road to the IGF: Lea Schönfelder and Peter Lu’s Perfect Woman” by Christian
Nutt, 2013.

Figure 2.12 Perfect Woman.
The goal of the game—to balance all the way to a long life—entails
balancing one’s physical skill in the game as well as one’s life choices.

Challenge in Perfect Woman operates on multiple levels and serves to
embody (pun intended) the difficulties of attaining life balance.
Think of challenge as a knob that you can turn up or down, like heat to a pot
on a stove, to influence the intensity of a player’s experience, help them
develop their skills at the game, provide meaningful effort toward the game’s
goal, and to give them access to concepts that can be difficult to express in
any other medium.

Skill, Strategy, Chance, and Uncertainty
Emerging from challenge is a quartet of concepts that have a deep
connection to one another: skill, strategy, chance, and uncertainty. Skill is
the degree to which a player has mastered an action within a game, while
strategy is the ability of the player to determine the best ways to perform the
actions of the game in order to achieve their goals. The more chance, the
harder it is for a player to develop strategies, regardless of their skill. This is
because no matter how much one practices, there is uncertainty that can
lead to unpredictable events in a game.4 The less chance, the more room
there is for them to develop strategies. In game design terms, how much of
the play experience is driven by the quality of player actions and the
decisions that the player makes relative to the things that happen outside the
player’s control?

4 Greg Costikyan’s book, Uncertainty in Games, provides a deep dive into ideas around chance
and uncertainty.

Take darts as an example (see Figure 2.13). The game requires a high degree
of skill in throwing the darts at the board. Players make decisions about how
to aim, and they develop strategies. The game contains no chance at all.
There is, however, uncertainty around where the opponents will throw their
darts, which impacts the player’s strategies, causing on-the-fly changes to a
player’s pursuit of winning.

Figure 2.13 A game of darts and a game of roulette.

At the other end of the spectrum, there is roulette (see Figure 2.13, right).
There is very little skill involved. The player simply picks a color, a number,
or a grouping of numbers and then hopes they guessed correctly. So while
there are decisions to make, they are made without much to go on—the
result is purely based on chance, and completely uncertain. There isn’t
meaningful information to take in and process to guide decisions beyond the
basic probabilities of hitting a certain color, number type, grouping, or
individual number. This isn’t to say there isn’t fun in chance-based play, but
it is of a different nature than in skill-based games.
Sometimes, uncertainty comes through the interaction of a player’s direct
actions and the interplay of objects within the playspace indirectly caused by
the player. The Japanese arcade game pachinko (see Figure 2.14) is a perfect
example—players shoot balls into a vertical maze of pins and gates with the
goal of getting the ball to a payout at the bottom of the maze. The
arrangement of the pins and gates makes it difficult to predict how the ball
will travel through the maze. Players can learn the responsiveness of the pins
and gates as a means of developing strategies for getting the ball through the
maze, but there is always a degree of uncertainty in what will happen.

Figure 2.14 A pachinko machine. Fashionslide
Basketball (see Figure 2.15) is a good example of a game that relies on skill
and strategy, has no chance, but has plenty of uncertainty. The game is one
that rewards height and speed, and of course dribbling, passing, and shooting
skills, but it also awards smart decision-making and team play. On offense,
players move the ball around from player to player to get the best
opportunity to shoot a high-percentage shot. On defense, the goal is to keep
the other team from having opportunities to shoot or at least make easy
baskets. Players can predict many things—how the ball will bounce off the
rim after a missed shot, where teammates will go on the floor to be ready to
catch a pass, and what the opposing team will do when the player with the
ball shoots.

Figure 2.15 A game of basketball.

Though there is no chance in basketball in the strict sense (we don’t roll a
die in the game or randomly generate the game’s elements), there is plenty of
uncertainty. At what angle will the ball come off the rim? Will a teammate be
waiting in the corner for a pass? Will the other team run to the goal to
rebound the ball? Everything the opponents do requires analysis and reaction
and thinking about what is the best way to achieve the goal of scoring more
points. Basketball is a sport where players develop skill and manage
uncertainty by reacting quickly to the constantly changing state of the game.
Poker, on the other hand, mixes chance and skill in a way that requires
players to develop strategies around the heavy dose of randomness inherent
in the game. Let’s use Texas hold ‘em as an example. As in most card games,
the deck is shuffled before play begins, and no one gets to look at the order
of the cards. To begin play, everyone is dealt two cards face down. Players
then make bets on their hands. This is a tricky time to bet in the game, as
there is so much chance and uncertainty. What is in the other players’ hands?
What’s still in the deck? Players have seen only 2 of the 52 cards. That
means they have no idea which cards are in the other players’ hands. This
requires players to have a good sense of probabilities around poker hands.
After the first round of betting, the dealer plays out 3 cards face-up in the
middle of the table. These are considered shared and can be factored into all

players’ hands. Even by the end of the game, players only know the identity
of 7 of the 52 cards in the deck. That’s only about 15% of the deck, leaving a
lot of uncertainty and chance in play. So players are left to rely on their
knowledge of the probabilities of the different poker hands like four of a
kind, full house, two of a kind, and so on. Just as important is their ability to
guess what their opponents are up to. Will the other players remember two
aces have already passed through in the previous hand? Is one opponent
bluffing about having a great hand? Did the other player who folded early do
so as a longer-term strategy?
The interaction of player skill and strategy are impacted by the ways the
game’s designer uses chance and allows for uncertainty, whether within the
space of possibility of the game or through the actions of other players or
through players’ pursuit of goals. Finding the balance of these is one of the
greater challenges in game design.

Decision-Making and Feedback
There are two related game design tools to consider when thinking about
how players understand a game’s state: the decision-making and feedback
that propel a player through their play experience. Let’s use bicycles as an
example here. For a bike to go forward, the rider has to pedal it. But while
doing the pedaling, the rider is making hundreds of decisions every second
—how fast should they go? Which direction should they head? Are there
cars, pedestrians, or other cyclists to keep an eye on? While operating a
bicycle, the rider has to make lots of decisions.
Games also require that players constantly evaluate what is happening while
continuing to carry out their actions in the game. This is what Katie Salen
and Eric Zimmerman refer to as the “action-outcome unit.”5 All play
experiences are made of a sequence of actions—pedal the bike—that have
outcomes—the bike moves forward—that lead to the next action—turn the
handle bars—that lead to the next outcome—the bike turns left. Ultimately,
this is what gameplay is made up of: dozens, even hundreds or thousands, of
small decisions that each creates a change in the game’s state. From these,
play experiences emerge, shaped along the way by the goals and subgoals,
however loose or strong they might be.

5 Katie Salen and Eric Zimmerman, Rules of Play, 2003, pg. 62.

Let’s look at a game of chess (see Figure 2.16). Chess is a turn-based game.
One player takes a turn, then the other, and so on. This allows more time for
decision-making and thus for interpreting the game’s state. For instance, one
player moves her knight a few squares in front of the other’s king. Check!
The second player is in trouble now, so he has to do something or the first
player will win. Her actions have had an effect on how close she is to
winning and how close he is to losing. So he has to react accordingly to the
effects of her move. Maybe he decides to move his bishop to take her knight,
which eases up the pressure on his king.

Figure 2.16 A game of chess.
Because each player has time to contemplate their actions, the game gains
the “thinking person’s pastime” reputation it has. In order to understand the
game’s state, to assess the available options, and to then make a decision
about what action to take with a play piece, the player needs to be able to
“read” the game. And in turn, the opponent needs to be able to understand
the impact the player’s move had on the game’s state.
Turn-based play encourages deliberate decision-making. But what happens if
we make chess a real-time game? Bennett Foddy’s Speed Chess (see Figure
2.17) does just that—and makes it a 16-player game to boot. In Speed Chess,
eight players per side use NES-style controllers to move their play pieces
across the board as quickly as possible. No need to wait your turn, as it’s a

mad dash for the king in 30 seconds or less. Because every play piece is
moving at the same time, the game becomes something completely different
from chess. Speed Chess is more like a chaotic sport, where coordination
between teammates is attempted, but because of the sheer speed of the game,
players are not always successful. That’s ok, though, because the next game
is just a few seconds away. Speed Chess is a real-time game, where all the
movements of players happen simultaneously and the state of the game
board is constantly changing. That’s the point of the game, really—things
are happening so fast no one can really understand the game state as a whole
or the more granular actions and their outcomes and impacts on the game
state.

Figure 2.17 Speed Chess. Photo by Bennett Foddy.
A well-designed game provides feedback on player actions. When a player
does something—move the left stick on a controller, for example—the
object moves to the left. But there are other forms of feedback in the game,
too, that are essential to the player knowing what is going on. Meshoff’s
Nidhogg (see Figure 2.18) provides a good example of this. In Nidhogg, two
players square off in a sword fight in which they try to defeat their opponent

by stabbing them fencing-style, or punching them, or even throwing their
sword at them. The goal of the game is to make it to the other side of the
game world. The first one there wins. Players can parry, run, jump, and
crawl to beat their opponent. The game is constantly taking player input and
giving feedback to confirm the action and to show the consequences of that
action. When the player moves the character side to side, they walk, which
provides feedback on the player’s actions—the movements of a controller
stick. Or when the player thrusts their sword by pushing the X button, the
little character dutifully responds. The game also provides feedback on
player progress by showing which player is in the lead by transitioning to
screens that are closer to their goal and showing the direction they should
run in with an arrow graphic at the top of the screen. Finally, when a player
reaches their goal, they are given feedback on the outcome of the game by
being ceremoniously eaten by a gigantic serpent and declared the winner.

Figure 2.18 A screenshot from Nidhogg.
Even games with looser goals and more experiential play experiences are
composed of these decision-then-feedback loops. Porpentine’s Howling
Dogs (see Figure 2.19) is a great example. It is a text-based game in which
players make choices about their movement through the game’s
environment. This being a text-based game, the actions—choosing a text
branch within a body of text—will lead to an outcome—the loading of the

corresponding text. Clicking on a highlighted link results in new text. The
players choose between “hydration unit” and “food dispenser” and are then
told about the results of that choice and given one or more choices to
continue from there. These decisions aren’t building toward a measurable or
competitive outcome, but instead informing the course the story will take.
And so while choices about how the player moves through Porpentine’s
game don’t generate a score, they do have poetic as well as story-changing
impact on the play experience.

Figure 2.19 A screenshot from Howling Dogs.

Games are made out of a continuous cycle of small decision-feedback loops,
each providing players with information on the game state. Ultimately, that
is what game design is all about: creating play experiences fueled by player
consideration and interaction. In chess, the turn-based structure allows
deeper player contemplation, while the frantic real-time nature of Speed
Chess prioritizes instinctual responses. And in games like Howling Dogs, the
choices prioritize experience rather than player control. The more clearly a
game designer crafts the ability of players to understand the game state and
the impact of their actions on it, the more chance players have to feel
empowered in their play.

Abstraction
Let’s look at abstraction, another important game design tool. The most
common way to think about abstraction in games is found with the abstract
strategy game Go (see Figure 2.20). The board is a grid, the pieces simple
black-and-white stones. In this case, abstraction refers to the fact that the
game doesn’t represent anything in particular. Compare this to the
boardgame The Game of Life (see Figure 2.20), in which everything is
representational—the little cars and passengers, the road and bridges, the
buildings, and the money. Go embodies a kind of abstraction for games, but
there are two other forms of abstraction game designers use to craft play
experiences: abstraction of real-world activities, and abstraction of systems.

Figure 2.20 The boardgames Go and The Game of Life. The Game of
Life photo by Fabian Bromann, used under Creative Commons

Attribution 2.0 Generic license.

A classic example of abstracting real-world activities is the relationship
between tennis and Atari’s Pong (see Figure 2.21). In tennis, players can
move to any spot on their side of the net; they can hit the ball to any spot on
the opponent’s side of the court they are able; they can hit the ball high or
low, soft or hard, with or without spin; and so on. But in Pong, tennis has
been simplified in a number of ways: players travel in a straight line along
the baseline; the ball can only travel along a single plane; there is limited
opportunity to control the direction the ball travels when hit.

Figure 2.21 Tennis and Pong. Tennis photo by Madchester, File: London
2012 Federer-Isner Quarterfinal Warm Up.jpg, Used under CC 3.0 SA
Unported. Pong photo by Rob Boudon, used under Creative Commons

Attribution 2.0 Generic license.
In other words, Pong is an abstraction of tennis. It takes a real-world game
and reimagines it as a videogame. The process of abstraction involves
reducing the real-world game down to an essential form that is appropriate
for the new medium (and for the technology at hand). The tennis court is
flattened, play only happens along a flat plane, the player and racket are
replaced by a paddle that can only move along a single line, and force of
swinging is removed altogether. As a result, a new play experience is
created.
A different approach to abstraction is found in Matt Leacock’s Pandemic
(see Figure 2.22). Players work together to protect the world from a set of
four deadly diseases. This is done on a gameboard with a simplified map of
the world, player tokens and identity cards, color-coded cubes representing
the diseases, a deck of cards representing a selected list of international
cities, and a set of cards representing disease outbreaks. Players are assigned
roles like Dispatcher, Medic, and Scientist, each with unique abilities.
Together, the players work to cure the four diseases by moving around the
gameboard, healing cities and treating virus outbreaks.

Figure 2.22 The boardgame Pandemic.

Pandemic uses abstraction differently than Pong. Instead of using abstraction
to create a playful structure around something we already do in the real
world, Pandemic models a real-world phenomenon—the spread of viruses—
into a game system. This is all done by abstracting real-world systems and
actions. Instead of traveling by car, plane, or boat, players simply move their
pieces from city to city following the rules of the game. Another example is
the way Pandemic abstracts epidemiology. The diseases spread by placing
cubes on the cities, and they are cured by removing the viruses. This is a
modeling of how viruses spread and are cured, but within the structures of a
game, it also is how play and fun are produced.
We have three different ways we can use abstraction as a design tool: as a
nonrepresentational approach to the design of game elements (Go), as a
means of reimagining everyday activities to suit the medium (Pong), and as
a way of simplifying real-world systems into game form (Pandemic).
Abstraction gets rid of extraneous details and lets game designers focus on
what’s fun about the interaction of the game goals, the actions players can
take to reach those goals, and the objects and playspaces.

Theme
The next basic game design tool is theme. A game’s theme is the logical
framework for how the game represents itself. Designers use it to shape the
player experience and help them understand the game more quickly and
intuitively.
Take chess as an example again. Chess doesn’t have a story, at least not an
implicit one. In fact, when we talk about chess, many people call it an
abstract strategy game. (The abstract in abstract strategy game refers to the
game not having representational qualities, similar to Go.) But chess does
represent something through the appearance and movements of its pieces
and its board—namely, a war of territorial acquisition. The king is the ruler,
with his powerful queen by his side. His advisors, the bishops, are nearby,
while his military, the knights, are just to the side of the bishops. And on the
outside of the knights are the rooks who form the outer protective guard. In
front of them are the pawns, or the foot soldiers. And on the opposite side of
the board is an identically organized opposing force.
Players very much engage in strategic warfare when playing chess, with the
goal of taking down the opponent’s king, conquering and controlling his
territory. And the actions for each object in the game—the six kinds of play
pieces—move in a way that relates to their role. The king is weak and slow
and must be protected; the queen is powerful and fast; the two rooks begin
along the edges and move in straight lines that define edges; the pawns are
plentiful but slow. So even an abstract strategy game like chess has a theme
that impacts the way we think about the game and its play. Theme is
essentially a conceptual handle for players to be able to grasp how the world
might work. And as they play, theme provides a way to interpret the
decisions and their outcomes on the game’s space of possibility.
A different approach to theme comes from the two-player cooperative game
Way (see Figure 2.23). Way has a more explicit theme—two players in very
different environments, dressed in the clothes of two different cultures,
trying to find ways to communicate with one another without a shared
spoken or written language. All the actions players perform to achieve the
goals are designed to support the idea of having to establish a language
through which the player can communicate. Players are able to indicate
emotional states and use gestures to suggest speed, direction and anything
else the players are able to convey through a simple gesture system. The

game’s goal—move through the puzzle-based platform levels—supports the
theme of communication quite well. It is impossible for a player new to the
game to solve most levels without assistance from the other player. Way
illustrates how theme can be handled through a mix of design and visual
representation to help us reflect on communication and cooperation. Way
then is “about” something, which provides the thematic framing for the
entire design of the game, and in turn, the play experience.

Figure 2.23 A screenshot from Way.

Kentucky Route Zero by Cardboard Computer (see Figure 2.24) represents
yet another use of theme in games. It has a very strong theme in terms of its
mood, its art style, and its interaction model. The player is an observer on a
storyworld centering on a truck driver named Conway who travels along the
eponymous Kentucky Route Zero. The game draws on old graphic text
adventures and point-and-click adventure games combined with a clean,
minimal illustration style and cinematic animations. While the interactivity
and the story of Kentucky Route Zero are not as tightly coupled to theme as

they are in Way, they do work well together to create an atmospheric play
experience. Everything about the sensory elements of the game supports the
moody, magical story inside the game. Kentucky Route Zero explores an
aesthetic theme that envelopes the player in a space of possibility more
focused on atmosphere and narrative.

Figure 2.24 A screenshot from Kentucky Route Zero.
What we see with theme is that a game’s goals, actions, sensory style, story,
and world can be combined in all sorts of ways depending on what kind of
play experience you want to provide. Sometimes, as with chess, the designer
wants a light theme coupled with strong game design and a near-abstract
presentation layer that helps the player understand their role and provide
context for interpreting their decisions and outcomes. Sometimes the
designer wants a conceptual theme tightly integrated with the game’s goals
and actions and light but supportive visuals and sound, as demonstrated with
Way. And sometimes the designer wants theme to provide a particular kind
of tone that is expressive, as in Kentucky Route Zero.

Storytelling
This brings us to the next game design tool: storytelling. Often, a game’s
theme is embedded in its story, as happens with film, comics, literature, and
more. Many games are constructed around storyworlds within which
players inhabit characters and carry out actions via their avatars. Decisions
made by the characters lead to the unfolding of the story. Of course, we can
tell stories through sports—recounting the tale of the winning goal just
seconds before the match ends—or in boardgames—recounting the story of
how the players came to almost, but not quite, eliminate the four viruses in
Pandemic. But in many videogames, the story is a larger part of the
experience. The layered impact of our actions and the advancing of the story
often go hand-in-hand. The less directly we control our role in a game, the
more story cues help us make sense of what happens and how well we are
advancing the story.
In the game Braid (see Figure 2.25), players control the main character, Tim,
who has lost his princess. To help Tim find her, the player navigates Tim
through a puzzle platformer game. Instead of controlling anything and
everything about Tim, the player can only make Tim move along platforms,
up and down ladders, and they can make Tim jump. That is it. Through these
limited forms of action, the player interacts with the storyworld and unfolds
Tim’s journey to find his princess. Tim also has some control of one other
aspect of the game—time. The player can rewind time, and in the process,
undo the things the player has made Tim do. This opens up a whole new
vantage point on the game and the storyworld of Braid. Each time-related
interaction with the world provides a place to consider different ideas
relating to our actions and how they impact the world around us.

Figure 2.25 Three forms of storytelling in Braid: (clockwise from top
left): the menu, the level introduction texts, and the gameplay itself.

Braid becomes a game that uses story as another element in the production
of play. The story in Braid unfolds through several conduits: the written
story elements read at the beginning of each level, through the actions
carried out by the player to move through each level, and through the meta-
narrative formed through the game menu, represented by a cut-away view of
Tim’s house. Together, these elements produce the story of Braid.
In the case of The Fullbright Company’s Gone Home (see Figure 2.26), the
storytelling involves similar elements of exposition, player action, and
contextual information. But in Gone Home, the whole point of the game is
the player interacting with the environment to experience the story. Gone
Home lacks many of the elements we might expect from a 3D game—no
shooting, no enemies to vanquish, and no “winning” or score. Instead,
players move through the space to piece together the story of Katie’s sister
Sam, and more generally, Katie and Sam’s parents. The goal of Gone Home
then is experiencing the story. To do this, The Fullbright Company made
moving and looking the primary actions of the game. The player looks at the
house, they look at the objects in the house, and through these and key audio
snippets, they piece together the story.

Figure 2.26 A screenshot from Gone Home. Screenshot courtesy of The
Fullbright Company.

Liam Burke’s Dog Eat Dog illustrates another way storytelling can emerge
from a play experience. The game provides a structure and context, while the
players generate the story themselves through their decisions and
interactions with one another. As a result, the stories players generate
through the tabletop role-playing game generally share broad thematic
elements, but they differ substantially in terms of the details.
Sometimes, a game’s story is the full play experience. Dietrich Squinkifer’s
Conversations We Have in My Head (see Figure 2.27) is a story-driven game
about one character’s memories of their relationship with a second character.
The two are on a walk in which the first character, Quarky, reminisces on
this childhood relationship. At points in Quarky’s monologue, the player can
select responses from the second character. These insert slight branches in
Quarky’s thoughts, but they stay on track in thinking back on the childhood.
If the player doesn’t make a choice, the story continues to unfold. The story
is the game in Conversations We Have in My Head.

Figure 2.27 A screenshot from Conversations We Have in My Head.

In these examples, we see story emerging through an interplay of text, player
action, and the game’s challenge and goals (Braid); story emerging through
the navigation of playspace and interaction with objects (Gone Home); story
emerging through the game’s structure (Dog Eat Dog); and story being the
primary activity and content of a game (Conversations We Have in My
Head).

Context of Play
The last basic tool of game design is the context within which a game is
played. Taking into account where the game is played and by whom has a
real impact on the experience. Will players be playing on their phone or
tablet? In a public space? Alone or with friends and family? Of course, game
designers can’t always predict this, but taking it into account can make a big
difference for the player. Imagine trying to play a mobile phone game that
has hour-long play sessions, and you will soon see why most mobile games
have shorter sessions developed around the concept of playing during a
commute, in between meetings, or at a coffee shop waiting for a friend to
arrive.
Speaking of mobile games, take the iPhone app, Tiny Games, by Hide and
Seek (see Figure 2.28). Tiny Games includes just that: a slew of tiny physical

games meant to be played in short sessions in a variety of contexts. The first
thing the player sees when opening the app is a question: “Where are you?”
The player can select Home, Walk, Road, Bar, In Line, or Work. Selecting
“Home” and “two players” might get you the game “Knife Fork Spoon,”
based on the folkgame Rock, Paper, Scissors, to be played while waiting for
a piece of bread to pop out of the toaster. Each round, the winner keeps the
utensil the other player played. By the end of the game (when the toast is
done), players have the utensils remaining for their meal. This game is
designed to be played with a friend in a kitchen, and as with all of the Tiny
Games, is meant for a specific context.

Figure 2.28 A screenshot from Tiny Games.
Another example of designing for context is Jenga Classic, Jenga Giant, and
Drunk Jenga, all based on Leslie Scott’s classic game Jenga. In Jenga,
players remove one block at a time from a tower constructed of 54 blocks,
placing the block on top of the structure. Over time, the structure becomes
more and more unstable, leading to the exciting climax of the blocks
tumbling down. Interesting aside: Jenga is one of the few games that ends
with a loser (the person who made the tower topple) rather than a winner.

Because of its popularity and the simple nature of the game’s materials (54
wooden blocks), it has been remade and redesigned by players for different
contexts. Jenga Giant is a version of the game with much larger blocks,
which makes the toppling much more of a spectacle. It’s popular in bars and
backyards, whereas classic Jenga is more often played on household
tabletops. This is design for context—making a version of the game that’s
fun in a different context; the larger blocks of Jenga Giant provide players
and spectators with a large, easy-to-see sculptural game. The development of
the larger version of Jenga then leads to the DIY modification called Drunk
Jenga or Drinking Jenga, depending on your circle of friends. In this game,
each block has an instruction written on it in marker like: “ladies drink,”
“tell a secret,” or, in more racy variants, “remove an article of clothing.”
Tiny Games is a set of games that are designed to fit a variety of contexts,
considering where the game is played, when it is played, and how many
players there are as the primary setting for the game to unfold. The Jenga
variants described here are the same game, with slightly different forms and
somewhat different features all developed to fit different contexts (home,
bar, outdoors). Context provides the setting for a game but can also change
the nature of the gameplay, leading to new variations and forms.

Summary
Game design uses a series of basic tools that are not so different from the
basic principles of visual art. These basic tools are used to combine the six
elements (actions, goals, rules, objects, playspace, and players) in ways that
can generate endless possibilities for player experience.
The 10 basic tools of game design are constraint; direct and indirect actions;
goals; challenge; skill, strategy, chance, and uncertainty; decision-making
and feedback; abstraction; theme; storytelling; and the context of play. Each
can be used alone, in combination, or to design new games.

 Constraint: The limitations we put on players through the design of
the actions, objects, and playspace of a game.
 Direct and indirect actions: Direct actions are the kinds of actions that
allow players to have immediate interaction with objects and the
playspace. Indirect actions are those that occur without direct contact
by the player or the primary objects they use to perform actions.

 Goals: A game’s goals give shape and purpose to play experiences by
giving players objectives.
 Challenge: The ways in which a game resists players. Sometimes
challenge comes from the difficulty of achieving a game’s goals, and
sometimes it comes from the concepts embodied in the game.
 Skill, strategy, chance, and uncertainty: Skill is the mastery of a
game’s actions, whereas strategy is a player’s ability to determine a
path to achieving the game’s (or their own) goals. Chance is the use of
randomization in a game, whereas uncertainty is the unpredictable
nature of what will happen as a game is played.
 Decision-making and feedback: Based on the game state and players’
pursuit of the game’s or their own goals, players make decisions about
what their next action should be. To understand the game state, the
player interprets the feedback the game provides on their last actions
and the changes brought about in the game state by that action.
 Abstraction: The modeling of complex phenomenon into game form.
 Theme: The logical framework for how a game is represented.
 Storytelling: A series of tools for shaping player experience that
borrow from traditional narrative structures.
 Context of Play: The consideration of when, where, with whom, and
other aspects of when players play a game.

Exercises
1. Think about your favorite game and what would make it easy to

achieve the game’s goals, and then think about how the game designer
used constraint to make the goal fun to pursue.

2. Choose a game with direct action—perhaps a sport where the ball is
directly handled by players—and make that interaction indirect. Now
try making indirect action direct. What does it change about the nature
of the game?

3. Take a purely strategic game like chess and add an element of chance
to it. How does this change the play experience?

4. Watch a game that allows for strategic play. Keep a log of the game
state to help you examine the role of uncertainty in the play
experience.

5. Find examples of games using abstraction to model the real world.
How close is the game system to the real-world system? Where does it
depart from the real-world system?

6. Pick a game you like, and consider how it uses theme and storytelling.
How do the theme and story relate to how players engage with the
game?

7. Pick a game you play at home. Reimagine the play experience if it
were played in a public park.

Chapter 3. The Kinds of Play

This chapter is a catalog of many of the different kinds of play experiences
game designers create using the basic game design tools. These kinds of play
include: competitive and cooperative play, play based on skill, experience or
chance, whimsical play, role-playing, performative and expressive play, and
simulation-based play.
Videogames are usually thought of in terms of genre—first person shooter,
puzzle platformer, survival, horror, and so on. This provides one way to
make it easy for players to understand what a game is and for developers to
operate within the conventions of expected play experiences. But this also
has a couple of side effects—it treats games like categorized commodities
rather than lived experiences, and it limits the potential of what game
designers can try to create for players. Instead of thinking about genre, we
prefer to think about the kinds of play our games provide players. This
allows us to imagine what the experience will be without set boundaries,
beyond marketing niches.
Thinking broadly about the kinds of play lets us focus on the sort of play
experience we want to give our players. Lots of fast decisions they don’t
have to think much about? A smaller number of decisions that require
strategy and analysis? Or very simple interactions that emphasize the visual,
aural, and emotional experience? Lots of story? No story at all? Cut-throat
competition? Or cooperation instead? A game that emphasizes designer
expression? Or one that puts player performance at the forefront? These are
just a handful of the things that make up play experiences.
This chapter breaks down some of the primary kinds of player tastes,
looking beyond genres like first person shooters or puzzle games or
platformers to focus on the more essential play types. We categorize the
kinds of play as competitive and cooperative play; play based on skill,
experience, or chance; whimsical play; role-playing; performative and
expressive play; and simulation-based play.
One important note before we begin. Like tastes in food, the kinds of play
are not mutually exclusive. Where a dish might call for garlic, onions,
oregano, and thyme, so a game’s design may require a mix of competition,
player expression, and whimsy. Keep this in mind as you review this chapter.

We delineate the kinds of play to bring clarity and focus to how they work,
but ultimately, how they are blended is up to you.

Competitive Play
In a competitive game, some players will win and some will lose. This
creates a context of competition in which players or teams of players try to
come out ahead of their opponent, whomever or whatever that might be. For
example, in soccer, the winner is the team that gets the most points by the
end of the game’s time limit. This is certainly the case with sports and most
multiplayer games.
Messhoff’s Nidhogg (see Figure 3.1) is a local multiplayer game—a
videogame played by two or more players gathered in the same space in
front of a shared screen. In Nidhogg, all the actions players perform are in
service of pitting one player’s skills against the other’s—running, jumping
and ducking, and thrusting or throwing a sword. The goal: to make it to the
far end of the world before her opponent does. To gain an advantage, the
player must attack her opponent to get past him, if only by a split-second
advantage. There’s a laser-like focus to Nidhogg. Everything about the
game’s design encourages you to compete against your opponent. There isn’t
much else you can do within the game’s space of possibility.

Figure 3.1 A screenshot from Nidhogg.
One of the things we find often in competitive games is yomi. Yomi is the
Japanese concept for knowing the mind of your opponent. It’s usually
applied to one-on-one competition, but it can also be found in sports, where
one team analyzes the other team’s past play to predict future actions, all in
service of gaining strategic advantage. In a game like Nidhogg, this means
trying to predict what the opponent is going to do so that the player can
make a move that takes advantage of the weaknesses in her opponent’s
strategic tendencies. Yomi often comes in layers. In a game of Nidhogg, the
player may think that her opponent is going to parry with his sword. But he
guesses that’s what she thinks he’ll do, so he thinks he’ll jump instead. But
she knows he knows she thinks he’ll parry, so she gets ready for him to do
something else. This example illustrates how recursive yomi can be, where
strategies and counter-strategies are all devised by trying to get inside an
opponent’s head.
This is where competition in some games gets really fascinating—designed
spaces where players can think about not only their own decisions, but those
of their opponents, too. Yomi is when the interplay of a player’s skill and
strategies come up against the uncertainty of another player’s skill and

strategy. What drives this is the pursuit of the game’s goals by both players.
So yomi is most seen in games with explicit goals in which one player or
team wins and the other loses.
Competition isn’t always head to head. In videogames, players often
compete with one another in single-player games. Take Semi Secret
Software’s Canabalt (see Figure 3.2), a single player “endless runner” in
which the player controls a little runner heading across a side-scrolling
environment. The player has one action they can take: jump. This allows
them to propel the player character over obstacles on the rooftops, avoid
objects that fall from the sky, and jump from building to building. The longer
the player lasts, the faster the game gets, until the player character hits its
maximum speed. The only way to slow down is to run into obstacles on the
rooftops.

Figure 3.2 A screenshot from Canabalt.

In Canabalt, the score measures the distance the player ran before getting
crushed by a falling object or falling off a roof. At the end of a game, the
score is posted to the scoreboard, and the player has the opportunity to share
their score via Twitter. This creates a form of competition in which one
player sees another’s score and compares it to their own. Sometimes
Canabalt tournaments are run, in which the game is projected on a big
screen, and players take turns playing, with the winner being the player with
the longest run. This creates a different kind of asynchronous competition
in which players are playing in one another’s presence with a group of
spectators.
Another basic form of competition comes in players competing against the
game itself—the challenge of reaching a game’s goals, in other words. A
great example is Captain Game’s Desert Golfing (see Figure 3.3). The name

is quite descriptive. Using an Angry Birds-style gesture, the player aims and
“hits” a golf ball toward a hole in the desert. Players are competing against
the game in two key ways—navigating the ball around the terrain, and
mastering the aim-and-shoot action. This kind of player-versus-game
competition is another way to think about challenge. A game like Desert
Golfing provides the player with pleasure through the pursuit of mastery by
providing resistance and challenge. Players pit themselves against the game,
doing their best to overcome the obstacles the game places in their path.

Figure 3.3 A screenshot from Desert Golfing.
In looking at Nidhogg, Canabalt, and Desert Golfing, we see three
approaches to designing competition—head-to-head competition, which
adds layers of complexity to the decisions players make; asynchronous
competition, in which players compete, but in ways measured by their
performance rather than by the outcome of head-to-head play; and
competition against the machine, which emphasizes the challenge of
mastering actions to pursue the game’s goal.
Within competitive games that pit players against one another directly, there
are two additional ideas to consider—symmetrical and asymmetrical
competition. Die Gute Fabrik’s Johann Sebastian Joust (see Figure 3.4) is an
example of symmetrical competition. Players have the same abilities—to
move around the playspace, to hold their PlayStation Move Motion

controllers aloft, and to use their bodies to jostle their opponent’s controller
to knock one another out of play. We call this symmetrical competition
because the players have shared actions with which they compete with one
another in pursuit of a common goal. In the case of JS Joust, this is to be the
last player with his controller still active. This kind of play is found in most
competitive games, as it is the most common approach to designing
competitive play.

Figure 3.4 Johann Sebastian Joust. Photo by Brent Knepper.
Asymmetrical competition is found in games in which players have
different actions, objects, or goals. A great example is Chris Hecker’s Spy
Party (see Figure 3.5). The game pits one player, the sniper, against another
player, the spy. The spy plays one of a dozen or so characters attending a
party, with all the other characters operating as nonplayer characters
(characters controlled by the computer). The spy moves around the room,
“talks” with other guests, and performs a series of missions in the hopes of
remaining undetected. The sniper’s goal is to figure out which character the
spy controls as he maneuvers around a crowded party. The sniper can look at
the room and zoom in to get a closer look, and if she thinks she has figured
out who the spy is, she has one bullet with which to shoot him. If the spy
remains undetected at the end of the allotted time, he wins. If the sniper

shoots the spy before time ends, she wins. If the sniper shoots the wrong
person, then the spy wins. The game sets up a wonderful “cat and mouse”
asymmetry that, while still in prerelease, has already spawned a fan WIKI
and innumerable “Let’s Play” videos.

Figure 3.5 Screenshots of the sniper view (top) and the spy view
(bottom).

Cooperative Play
Though it is by far the most prevalent form of play, competition isn’t the
only way to interact with other players. Sometimes, people feel like
cooperating. These are play experiences in which players work together to
achieve the game’s goals. One of the things about cooperative play is that
when it goes well, it is one of the best kinds of fun you can have. You and
your collaborators are in sync, making things happen that none of you could
do on your own. Like a well-executed pass in a soccer match leading to a
goal, you are in sync with someone else, working to meet a shared goal.
One of our favorite cooperative games is Valve’s Portal 2 (see Figure 3.6).
There is a single-player campaign, but in our opinion, the more enjoyable
play experience is the two-player cooperative campaign. The players inhabit
ATLAS and P-body, two robots inside Aperture Laboratories’ test center.
Working together, they solve the spatial puzzles of the game. In some cases,
the two have to time their actions, while in other situations one player has to
create portals for the other. Throughout, the level design and puzzle design
create a collaborative, cooperative play experience.

Figure 3.6 Our friends Brian and Robert conferring during a game of
Portal 2.

Portal 2 is also a great example of symmetrical cooperative play. This
refers to games in which the cooperating players get to use the same actions
and have the same basic attributes. With Portal 2, both player characters
look different, but they shoot portals, run, and jump in the same way. Neither
has a built-in “role” in the collaboration. This leaves space for the players to
develop and put into action strategies that may end up with one player doing
one thing and another doing something else. The important point here is that
this is left to the players to decide, not the designers.
An example of asymmetrical cooperative play is Matt Leacock’s board
game Pandemic. In Pandemic, players work together to protect the world
from a set of four deadly diseases. If the players don’t work together, the
game will easily defeat them. Together, the players work to cure each disease
by moving around the gameboard, healing cities and treating virus
outbreaks. Players are assigned roles like Dispatcher, Medic, and Scientist
that each have their own special abilities. These different roles assumed by
the players create the asymmetry. The Medic can clear up diseases more
quickly, while the Dispatcher can facilitate the movement of other players
around the board. This creates asymmetrical cooperation in which the
players work to figure out how to best utilize the differences in the
characters to achieve the game’s goal.
Coco & Co.’s videogame Way (see Figure 3.7) is another great example of
cooperative play, drawing on the symmetrical cooperation model in an
interesting way. Way is a two-player puzzle platformer where players take
turns solving puzzles over the Internet. The active player doesn’t know
exactly how to solve the puzzle because they can’t see everything in the
playspace, while the inactive player can see the full puzzle space. Way
quickly becomes about learning to communicate through nonverbal cues to
solve the puzzles so that the players can share information with one another.
The active player will move in a particular direction, or perform a particular
task, and the inactive player will try to convey whether or not the active
player is getting closer to or further from the solution using body language.
Way is an example of a third kind of cooperative play: symbiotic
cooperation. By this, we mean the players are reliant on one another to play
the game. Without the assistance of the other player, it is close to impossible
to make your way through the game with all of its invisible platforms.

Figure 3.7 A screenshot from Way.

What we see with cooperative play is the design challenge of creating a truly
collaborative experience for players, one in which it is impossible to meet
the game’s goals alone, requiring players to work with each other to find
success. Whether it be symmetrical, asymmetrical or symbiotic, cooperative
play is an important kind of play.

Skill-Based Play
With both competitive and cooperative play, players are asked to develop
skill to perform the game’s actions in pursuit of its goals. Soccer asks us to
have skills in order to run, start, stop, and change directions, but also to
become deft in manipulating the ball with our feet, our knees, the tops of our
head, and even our chests. This is one core kind of play: skill-based play.
We can further break skill down into active skill and mental skill.
Team Meat’s Super Meat Boy is a great example of a game that requires
active skills. The game falls decidedly in the “masocore” category of games

that require a good deal of skill around precise movement and timing. The
player controls Meat Boy, who has the goal of getting from point A to point
B, where Bandage Girl awaits. To do this, the player must move Meat Boy
around through side-to-side movement and jumping. Like many platformers,
Super Meat Boy requires nuanced twitch response and timing. Unlike the
other SMB, Super Mario Bros., Super Meat Boy requires players to make
use of speed and pin-point accurate timing to climb walls. To play the game,
you need to develop skills to gauge distances and time jumps and wall
climbs. And, like many incredibly challenging games, developing those
skills involves failing over and over again and learning from hundreds,
sometimes thousands, of failures.
For mental skill, a great example is Thekla Inc.’s The Witness (see Figure
3.8). The player explores an empty island filled with a series of path-tracing
puzzles that unlock buildings, turn on machines, and generally bring the
island to life. While the player does have to move around the world and trace
the puzzles, the challenges they confront are mostly mental. For example, in
some of the puzzles, they must remember the path of an adjacent puzzle and
then trace its mirror image on an otherwise invisible puzzle space. The
execution of this is easy enough, but the mental challenge of remembering
and inverting the sequence is where the skill lies.

Figure 3.8 A screenshot from The Witness.

Still other games combine these qualities to create play experiences that
draw upon both active and mental skill. Portal comes to mind here. The
game’s designer, Kim Swift, wanted to put pressure on the player’s ability to
enact the solution to the puzzle. To do this, Kim added time pressure. The
player has to make precisely timed portals that allow them to shoot the
portal, jump through, duck, and then shoot another portal, all while avoiding
the high-energy pellets. To know when, the player must think through the
spatial puzzle, execute well-timed portal shots, and then move through them
to avoid being hit by the pellet. So the game requires both excellent hand-
eye coordination and timing, but also the additional mental skill of sorting
out a solution to the puzzle.
What connects these three examples—Super Meat Boy, The Witness, and
Portal—is the design of challenges that put pressure on different kinds and
combinations of skill. The more accurate or developed the skill
requirements, the more time it will require of players to get to the point they
have acquired the requisite skill mastery. This might limit the number of
players who will be willing to commit to playing and mastering these skills,
but it also makes the rewards of achieving victories great.

Experience-Based Play
What if you want to provide players with an experience that isn’t built out of
overcoming skill-based challenge but instead focuses on other aspects of the
play experience? A good example of this is The Chinese Room’s Dear
Esther (see Figure 3.9). The player explores an island on which they find a
series of letters a man wrote to his deceased wife. By moving through the
island, exploring the contents of buildings and reading the letters, the player
unfolds the story of the man and his wife. So long as the player understands
the basic mechanisms for navigating a 3D first-person game (not something
we can easily take for granted, as we will discuss in Chapter 4, “The Player
Experience”), they will be able to experience the story the developers
created. The core of the experience is exploration, enjoying the design of the
spaces, and of course, unfolding the story between the man and wife.

Figure 3.9 A screenshot from Dear Esther.

In text-based games like Christine Love’s Analogue: A Hate Story (see
Figure 3.10), players experience a story through a combination of text,
image, and interaction prompts. The player takes the role of someone in the
future who has stumbled upon a broken computer system. Sometimes
players are asked to type inputs into a command-line prompt, while in other
situations they simply make choices from a list of options. Yes, there are
decisions to be made, but because the game isn’t competitive or skill based,
the player is left to focus on the text and the images and to consider the
meaning of the story.

Figure 3.10 A screenshot from Analogue: A Hate Story.
Even within games that are competitive on the surface, players can find
other forms of experience. The folkgame ninja is a great example. Players
stand in a circle and take turns making one move that ends in a “ninja” pose.
The basic goal is to hit the hands of one of the adjacent players, while
avoiding having your own hands hit. Though this sets up a competitive
premise and does involve physical and strategic skill, most games of ninja
are played with emphasis on acting like a ninja, being part of the experience
as a group, but not really on winning or losing. As ninja suggests, many
games can be played for experience instead of competition or skill
development, as long as the game’s designer has left room within the space
of possibility.
In these three examples, we can see three approaches to experiential play—
that of navigating a 3D space to experience a story (Dear Esther), that of a
combination of text and image to piece a story together (Analogue: A Hate
Story), and that of physical activity that emphasizes communal engagement
over winning (ninja).

Games of Chance and Uncertainty
The games we’ve looked at so far in this chapter have focused on play styles
in which the structure and outcome of the experience are in the hands of the
player or the game’s designer. But what happens when you bring chance into
the mix? This is, of course, the basis of many cardgames like poker or
blackjack. But we can find this sort of mix in other games, too.
A game that mixes chance and skill in interesting ways is Sirvo LLC’s
Threes (see Figure 3.11), a mobile puzzle game in which players drag tiles
around to combine them into multiples of threes. A 1 tile and a 2 tile create a
3 tile, which combined with another 3 makes a 6, two of which create a 12,
24, 48, and so on. Every move the player makes concludes with a randomly
selected tile loading onto the grid, so the player never knows exactly what is
coming down the pipe. When the grid is filled with tiles and there are no
more possible moves, the game is over.

Figure 3.11 A screenshot from Threes.
Players have to develop strategies to combine as many tiles as possible with
each move. So Threes is a game involving the strategic management of
uncertainty—the player doesn’t know exactly what kind of tile they will get,
so part of their strategy is about managing their moves to anticipate a variety
of outcomes. The game does provide players with some information,
however. There is an indicator letting the player know what color tile will
drop next. This comes in handy in thinking through the placement of tiles,
particularly when the board is nearly filled. In this light, Threes is a game
that encourages players to develop skills to navigate uncertain events in the

game, plan their next actions, and develop longer-term strategies around
obtaining the game’s goal.
Android: Netrunner (see Figure 3.12), Lukas Litzsinger’s reboot of Richard
Garfield’s Netrunner, is an asymmetrical card game in which one player, the
Runner, attacks the other player, the Corporation, to steal Agenda points
from the Corporation. The Corporation, in turn, tries to defend itself while
secretly scoring Agenda points before the Runner can steal them.

Figure 3.12 A game of Android: Netrunner.

The game mixes strategy, skill, chance, and uncertainty in interesting ways.
Before the game starts, the two players construct their deck of cards for play.
The players then separately shuffle their decks so that the cards will appear
in a random order during the course of play. If the players have constructed
their decks well, they will have strategies for playing Agendas (if they are
the Corporation), or in the case of Runners, stealing Agendas. Players have
to weigh the probabilities of a particular card appearing in the flow of the
game. As a result, if there is a card that the player really wants to use, they
have to put in three of that card (the maximum allowed). In a deck of 45
cards, that means 1/15 of the player’s deck is that particular card, giving
them a fair chance in the flow of a game that they will draw that particular
card in time to put it to use.

But just getting one particular type of card to come up isn’t enough to
succeed. Players have to think through strategies involving the possible
interplay of several different kinds of cards and think through the
probabilities of them emerging in ways that allow them to be played
together. So players have to develop strategies that take advantage of the
actions chosen for that deck, such as developing “engines”—or chains of
cards—that help pursue or protect Agendas, remembering what cards are in
their deck, which have already been played, and which are likely to come up
soon. They must then balance these strategies against the chance of the
shuffled deck by managing their own uncertainty of the strategies of their
opponent. Android: Netrunner requires that players intuit the strategies their
opponent will put into play, trying to make sense of the available
information and guess what lurks in their deck, or in the case of the
Corporations, their unrezzed cards (the still face-down cards the Corporation
has put into play).
The proportion in which you use strategy, skill, chance, and uncertainty is
one of your considerations as a designer. It’s like cooking and the choice you
have between sweet, salty, sour, and spicy, or how and in what proportions
you combine all four. Like many aspects of game design, chance is like a
tasty spice. The right amount makes food taste great, too much can be
overbearing, and not enough can make things bland. And our tastes change
as we move through life. To young children, Candy Land (see Figure 3.13)
seems like the best game ever. (Play it with a four-year-old some time; you’ll
see.) But at some point, the complete lack of choice and the total reliance on
chance gets old. There is no player decision-making in the game. Players just
spin the spinner (or draw cards, if you are playing an older version) and then
move accordingly. For children, the illustrations and the imaginative play of
the Candy Land world is more than enough to make the game fun, but for
many others, that just isn’t enough.

Figure 3.13 A game of Candy Land.

Purely chance-based games remove decision-making from the player
experience. Threes suggests smart ways to use strategy and chance to
enhance the variety of decision-making for players. Android: Netrunner
employs strategy, chance, and skill built over multiple games (and losses) to
create a unique play experience. Android: Netrunner is a great example of a
game that requires mental skill within a chance-based context. And Candy
Land reminds us that chance has to be carefully managed to keep players
engaged.

Whimsical Play
And now for something completely different. While most games designed
around the interplay of strategy, chance, and uncertainty tend to be pretty
serious, there are other play styles that are funny and whimsical. This sort of
play feels like a ride at an amusement park (see Figure 3.14) or kids rolling
down a hill. Whimsical play emphasizes silly actions, unexpected results,
and creating a sense of euphoria by generating dizziness and a play
experience that you need to feel to understand. Three videogames that
embody this sort of experience are Kaho Abe’s Hit Me, Bennett Foddy’s
QWOP, and Keita Takahashi’s Tenya Wanya Teens.

Figure 3.14 A ride at Coney Island.

Hit Me (see Figure 3.15) is a videogame (actually, more of a combination
digital/physical game) in which two players don safety hats outfitted with
big red buttons and then proceed to try to push one another’s button.
Literally. The two players simultaneously strain to reach the other’s button
on their helmet and keep their own helmet out of reach. Thanks to the circle
within which the game takes place, the two players are forced to stay close
together, which increases the chaotically silly energy of the game. That the
game is played with a group of spectators is important, as this further adds to
the silliness—people laugh, gasp, and cheer as the players try to hit one
another’s buttons. Hit Me becomes a caricature of cartoon-like combat.
Should a player hit their opponent’s button, style points are earned by having
the best picture taken. (The buttons also house cameras pointed at the
opponent.) The judge and spectators reward style points for the best pictures.
This changes the dynamics of the game. It becomes as much about the
picture-taking as about the physical interactions. Everything from the design
of the hats to the actions and goal of taking creative photographs of the other
player as you hit their button creates a whimsical experience framed by the
silly behaviors players enact in pursuit of their goals.

Figure 3.15 A game of Hit Me.
Another game with lots of whimsy is Bennett Foddy’s QWOP (see Figure
3.16). The game seems straightforward: players try to propel a runner along
a track using the Q, W, O, and P keys on a QWERTY keyboard. Things get
challenging, and funny, based on the way the keys are mapped to the
runner’s skeletal system. Instead of making the act of walking trivial like
most videogames do, the Q and W map to the runner’s thighs, while the O
and the P to the runner’s calves. This sets up a very challenging goal—keep
the player upright and moving forward. The upper body is completely at the
whim of the positioning of the legs, often flopping forward and backward,
causing the runner to collapse after just a few steps. In designing QWOP,
Foddy played with constraint—in this case on how players manipulate a
humanoid to run—to develop a whimsically frustrating play experience.

Figure 3.16 A screenshot from QWOP.
QWOP brings out whimsy in different ways than Hit Me. Instead of having
players use their bodies to create the playfulness, QWOP relies on awkward,
intentionally difficult skeletal rigging and button control of the onscreen
character. Most games make controlling player movement trivial—simply
press the proper key, or push the correct stick, and the onscreen character
moves. But QWOP plays with these ideas to create a truly whimsical play
experience.
An example of conceptual whimsy is Tenya Wanya Teens by Keita Takashi
and Uvula with the assistance of Wild Rumpus and Venus Patrol (see Figure
3.17). The game’s silliness starts with its controller: a joystick next to a
panel of 16 buttons with no identifying labels. The player is tasked with
helping a little onscreen boy perform the appropriate task by pressing the
correct button on the controller. So sometimes, this means the player makes
the character cry when it should be bathing, or rock out on a guitar when the
character should be sleeping. The game doesn’t ask the player to physically
move or act silly, but it does lead to all sorts of onscreen hilarity. Adding to
this is the speed with which the game changes environments and tasks—

nearly every 10 seconds, the character is presented with a new activity, and
the player has to find the right button to perform the task.

Figure 3.17 A game of Tenya Wanya Teens.
Whimsical play is often about physical silliness. Spinning around on a
merry-go-round and then trying to walk is whimsical play. Twister and the
ways it asks the player to move their body around other players is whimsical
play. As we see in Hit Me, a careful interplay of actions and goals can set up
silly interactions. With QWOP, whimsical play can be produced through the
careful application of constraint to player actions. Whimsical games like Hit
Me and QWOP emphasize the role of the body, and differently from sports,
focus on our physical foibles over our skillful grace. And with Tenya Wanya
Teens, the silliness is conceptual, as the comedic design of the unexpected
outcomes from the player’s attempts to click the correct button lead their
character to perform actions that don’t match their setting. And in so doing,
the designer has created whimsy through the interplay of actions, goals, and
theme.

Role-Playing
For many people, games are a form of storytelling. Perhaps better stated,
they are a form of story experience; as the player engages with the game,
and through their actions, the story unfolds. There are multiple traditions of
storytelling that wind through games, from the character-driven experience
of tabletop role-playing games to the more cinematic storytelling associated
with many AAA titles. Let’s look at an example of both kinds: Leah
Gilliam’s tabletop RPG Lesberation: Trouble in Paradise, and Tale of Tales’
first-person dark fairytale The Path.
Leah Gilliam’s role-playing game Lesberation: Trouble in Paradise (see
Figure 3.18) puts players in the role of a group of lesbian activists trying to
establish a utopian society. The game’s structure is much simpler than the
average RPG. Players are given a set of cards representing objects—coffee
mugs, Volkswagen minivans, microphones, rope, and so on—and verbs—
rock, love, shout, know, and so on. Players lay their cards out face-up so that
everyone can see what everyone else has. Players then take turns playing a
card of each type to advance the story scene established by the game-runner.
Players have to agree upon decisions as a group and can use other players’
cards with permission. The game promotes discussion and consensus-
making within a socio-political scenario.

Figure 3.18 A game of Lesberation: Trouble in Paradise. Photo by Leah
Gilliam.

Lesberation: Trouble in Paradise uses the basic ideas and structures of role-
playing games, but in a way that is accessible to a larger audience. No
character sheets, no long rules manual, and no monster manual are needed to
play the game. There are just a few simple rules for role-playing a group of
activists in a near future scenario. We could pretend to be in those roles
without a game, but the light structure of Lesberation makes the experience
more enjoyable and facilitates the creation and interaction of the characters.
That is really what this sort of play is about: providing the structure within
which stories unfold through role-playing. Jesper Juul has referred to this as
games of emergence.1 By this, Juul refers to a space of possibility that is in
part defined by how its players enact the actions, objects, and playspace.
Lesberation allows players to develop stories within a loose set of rules
through which all sorts of possibilities can emerge, limited only by players’
imaginations.

1 Jesper Juul, “The Open and the Closed: Games of Emergence and Games of Progression.”
www.jesperjuul.net/text/openandtheclosed.html. 2002.

http://www.jesperjuul.net/text/openandtheclosed.html

Tale of Tales’ The Path (see Figure 3.19) is a very different kind of role-
playing game. Rather than the character and the events being generated by
the players, it is designed by the game’s creators and experienced by the
player. The storyworld of The Path is loosely based on the Little Red Riding
Hood fairytale. Six sisters between the ages of 9 and 19 are on the outskirts
of a forest. The girls’ mother asks that one of them run over to their
grandmother’s house in the woods. The player picks one of the six sisters to
inhabit on the journey. As the game progresses, players inhabit all six
characters and experience the world through their eyes. This sort of role-
playing experience happens inside a predefined storyworld, one authored by
the gamemakers and unfolded by the player.

Figure 3.19 A screenshot from The Path.

This approach is much closer to movies in that a tighter storyworld can be
constructed, with characters and situations designed by the gamemakers
rather than by the players themselves. While this approach provides less
open-ended play, it provides richer, authored storyworlds to investigate.
Jesper Juul refers to this as games of progression—those in which the
player makes decisions, but all possible outcomes are already defined by the
game’s creators. In The Path, players are free to choose to wander into the

woods, but nothing they see or encounter exists without having been
preauthored by the game’s creators.
A similar example is Porpentine’s text adventure Howling Dogs. Instead of
using 3D representations of a space, the game is delivered entirely through
text. Players navigate through Porpentine’s surreal storyworld by clicking on
text links inside the game. The story is set in a dystopian prison in which the
player engages with virtual reality devices. The experience is heightened
through its text-based narrative in the same way novels provide us with
opportunities to imagine the worlds they present to us. Because of the
fractured structure of the game’s story, players are left to move through the
space in a more impressionistic manner, seeking to construct an
understanding of who their character is and why they are where they are.
Howling Dogs drops us into a role that we must play through to begin to
understand. Attempting to find a traditional story progression will only lead
to frustration, but embodying the experimental nature of both the format—
interactive fiction—and the storyspace provides for a deeply striking
experience.
What we see in Lesberation, The Path, and Howling Dogs are three of the
many ways role-playing can be experienced inside a game. Lesberation lets
players generate their own stories by providing a structure and set of
processes for collaboratively telling a story. It’s a system that establishes the
general rules for storytelling and lets players feed their story through these
rules to create an emergent play experience. The Path, on the other hand, has
a preauthored story that the player explores by moving through the
gameworld. In The Path, players experience the game differently through
each of the sisters, playing a series of roles that are defined by the game. It’s
like a machine that contains the threads of the story, delivering each thread
as players experience each of the characters that delivers a progressive play
experience. Howling Dogs is similar in structure, but instead it uses
branching text structures to deliver the story experience and help the player
piece together who they are. The player makes choices, and as they do so,
they experience one path through the story. These three examples mark the
different approaches to how role-playing can tell stories in games, as games
of emergence and games of progression. And there are many ways in
between.

Performative Play
Some games use performance as the core of the play experience. When they
do, they’re often as much fun to watch as they are to play; generating
dramatic action and acting. A game of Charades is based on player
performance, adding challenge by taking away some of the expressive
abilities like speech to emphasize the qualities of gesture to give clues to the
team. Hasbro’s Twister provides yet another form of physical play: using a
spinner to randomly select the color players must place their feet and hands
on, within the colored dots on a floor mat. This creates a form of modern
dance where the fun is all in the foibles of the body. Two videogames
illustrate different kinds of performative play: Die Gute Fabrik’s Johann
Sebastian Joust and Dietrich Squinkifer’s Coffee: A Misunderstanding.
The hybrid physical/digital game Johann Sebastian Joust (see Figure 3.20)
generates improvisational performance through the physical interplay of
players attempting to jostle each others’ controllers. Players also need to
listen to the game’s classical music score to learn the speed with which they
should move. When the music is slow, players also move slowly—carefully
protecting their controllers. When the music speeds up, play becomes more
frantic, with players making faster moves and larger gestures. To the
spectator, the dance of the players to the music looks like mercenaries at a
classical ballroom dance.

Figure 3.20 A game of Johann Sebastian Joust. Photo by Elliot Trinidad.
Used with permission of the IndieCade International Festival of

Independent Games.

Like a playground game, JS Joust is flexible, allowing for individual or team
play. But it is also a videogame in the tradition of Wii Sports, where the
Playstation Move Motion controller provides feedback and input into the
game and is responsive to different musical styles and speeds. What JS Joust
emphasizes the most is player performance—in terms of agility and strategy,
but also in the sense that there is a dance that everyone is participating in.
The interesting thing is that the players, who are deeply absorbed in keeping
balanced while unbalancing everyone else, have little time to think about
what they are doing or what they look like while doing it. So JS Joust is
performative, but in a fairly unselfconscious way that spectators observe
more than the players are aware of. Absorption becomes an important design
tool for creating unselfconscious play, as it takes the player’s mind away
from their everyday focus on self-presentation and opens them up to an
unselfconsciously performative play experience.

A very different example is Dietrich Squinkifer’s Coffee: A
Misunderstanding (see Figure 3.21). In this theatrical game, two players
perform as online friends meeting in person for the first time at a fan
convention. The players receive prompts for how to interact with one
another via their phones from the game’s moderator. How they interpret and
enact the prompts is up to the players: will they work together to have an
enjoyable experience? Will they be at odds and create a tense conversation?
Will the conversation simply be awkward? To add to the challenge of
maintaining a conversation, two audience volunteers are given a mobile
device that allows them to choose key moments and topics in the
conversation. As Dietrich describes it, “It’s a combination of multiplayer
Choose Your Own Adventure and improv theatre, resulting in a play
experience that’s every bit as awkward as the story it’s trying to tell.”2

Dietrich points out an important aspect of this sort of performative play—
there is a deliberate, self-conscious performance in this game that very much
adds to the game’s effect on players and spectators alike.

2 From the description of the game on Dietrich Squinkifer’s website (http://squinky.me/my-
games/coffee-a-misunderstanding/).

Figure 3.21 A game of Coffee: A Misunderstanding.
Games can often act like a score for player performance, generating dance,
acting, and acrobatics emergent from the game’s play. With JS Joust, we see

http://squinky.me/my-games/coffee-a-misunderstanding/
http://squinky.me/my-games/coffee-a-misunderstanding/

a form of performative play that asks players to abandon themselves to the
game in a way that enables performance within the game and for those
watching the game. The more focused a player becomes, the more
performative they are. Coffee: A Misunderstanding takes a very different
approach, keeping players keenly aware of their actions and the potential for
awkwardness and vulnerability. The game asks players to perform within the
context and prompts designed, but the way players deliver their lines and the
choices made by the audience volunteers add to the unpredictable
playfulness of the experience.

Expressive Play
A related form of play is expressive play: play that expresses a feeling or
concept, whether intended by the designer or derived from the player. This
idea of artistic expression is usually associated with music, film, literature,
and painting, but not games. However, increasingly, gamemakers are using
games to express ideas and feelings. Two examples of this are anna
anthropy’s Queers in Love at the End of the World and Elizabeth Sampat’s
Deadbolt.
Queers in Love at the End of the World (see Figure 3.22) is a text-based
game in which actions are presented in the form of hyperlinks. The player
has only 10 seconds to play the entire game. In the final fleeting moments of
the world, the player steals a kiss, tries to say something, looks at the
sky...all within 10 seconds. And then the game ends. If the player chooses to
restart the game, they can try to see all of the paths not taken—wonder how
much can be done in such a short amount of time and experience worry,
desire, and regret condensed into the short gameplay. It uses only text and a
countdown timer, but trying to read everything and make choices only
emphasizes the urgency of the gameplay and of the narrative of a world
ending. Queers in Love at the End of the World expresses much in such a
short amount of time: how we often wrestle with how to express the way we
feel about our partners, our feelings around life ending when there are things
left unsaid and not done, and the fleeting quality of a moment. So the game
is expressive both for anna and for the player in making their decisions and
reflecting upon their meaning.

Figure 3.22 A screenshot from Queers in Love at the End of the World.

Elizabeth Sampat’s Deadbolt is a tabletop role-playing game structured
around personal reflection and conversation. Play begins with players filling
out the key—a simple set of evaluations of the other players including who
among the players is most intimidating, most beautiful, best known, least
known, and so on. Once everyone has filled out the key, the players then
open two envelopes: Signifier and the Question. Signifier lets the player
know which player they will talk to first. The second envelope lets the player
know what question will be asked. Conversations then begin around the
prompts.
First, players are asked questions about themselves, and then about the other
player. In the third round, players are given blank cards onto which they can
write a comment or question for one of the other players. These cannot be
viewed by the other player until the game is over. At that point, free from the
structure of the game, the player can choose to engage with the other player
who gave their comment or question. If a player is emotionally affected by
the final card but doesn’t want to speak about it, they can give the player
who gave them the card a Deadbolt button.
Expressive play is a form of play that often subverts player choice in an
effort to clearly express and share something about the human experience. In
the case of Queers in Love at the End of the World, our choices are limited

by the inexorable end of a 10-second timer. But choice-making isn’t the
place where expression resides in the game. Instead, it comes from anna’s
speculations. And in Deadbolt, players are given a framework within which
they can reflect and express feelings about others and themselves. The game
isn’t about winning or losing, but simply about allowing oneself to be honest
and reflective and to share those reflections.

Simulation-Based Play
The last kind of play we’d like to discuss is simulation-based play. Sim City
and Rollercoaster Tycoon are well-known examples of this kind of game
experience: some aspect of the real world is abstracted into a game, and
players get to play “mayor” or “tycoon” within the abstracted interactive
model. The Landlord’s Game designed by Elizabeth Magie, which was the
origin of a game we know now as Monopoly, is also an example of
simulation-based play. Magie designed the game to demonstrate the
economic principles of Georgism, an economic system proposed by Henry
George. The primary focus of the game was to demonstrate how rents make
property owners wealthy and tenants impoverished. Many of us can relate to
the way this feels when we are inexorably losing a game of Monopoly to a
greedy opponent or becoming that greedy property owner through the luck
of a dice roll and some wisely purchased properties.
Two independent simulation-based videogames, Molleindustria’s The
McDonald’s Videogame and Lucas Pope’s Papers, Please, provide great
examples of simulation-based games using the game design tool of
abstraction—simplifying the complexity of real-world systems to be
playable and accessible in a game.
The McDonald’s Videogame (see Figure 3.23) is a satirical modeling of the
McDonald’s fast food restaurant chain and its impact on the people, animals,
and environments that come in contact with the company. The game is made
up of four interconnected playable models of the McDonald’s ecosystem: a
farming simulator that can grow soy beans or cattle; a meat processing plant;
a McDonald’s restaurant; and the McDonald’s corporate board room.

Figure 3.23 A screenshot from The McDonald’s Videogame.

The game abstracts the complex systems at play at each level to emphasize
the impacts McDonald’s has on its supply chain and the interconnected
nature of the company’s business. The farming feeds into the slaughterhouse,
which supplies the meat to the restaurants, which in turn produces revenue
for the corporation. The game allows players to inhabit this process and play
inside the systemic representation of the fast food restaurant. It does so to
political ends, to use games and play to make a rhetorical point about the
industry.
A different kind of simulation-based play is found in Papers, Please (see
Figure 3.24). On the surface, Papers, Please seems like a political game.
The player takes on the role of an employee in the Ministry of Admission
inspecting passports in the fictional Arstotzka. Each day, the officer is given
a set of notices about what to look out for as the applicants are being
processed. For example, the player has to make sure that on some days only
citizens of Arstotzka are allowed to enter, while on other days, those with
valid visas can get in. Through the repetitive actions required to examine and
stamp each passport, the game models the experience of someone in a
similar kind of job. It also comments upon the seemingly arbitrary nature of
government policies around issues that deeply affect people’s lives. Instead

of focusing on the larger systemic modeling, Papers, Please emphasizes the
particulars of one small part of a larger whole, in the process placing the
whole in a new light.

Figure 3.24 A screenshot from Papers, Please.
These two examples show different scales at which we can produce
simulations. The McDonald’s Videogame simulates a situation in a holistic
yet stylized way, taking into account a large number of factors and
presenting them in a simplified top-down model. Papers, Please scales
things at a more human scale by putting the player into a more direct role of
an individual. The whole can be experienced and contemplated, but in a
more granular way. Both of them use point of view—from above or from
below—as well as the game design tool of abstraction to help us understand
the mechanics of a complex system.

Summary
We’ve looked at a wide range of play styles. There are multiple ways to
think about designing games that can produce competition, cooperation,
skill, chance, strategy, whimsy, role-playing, performance, expressiveness,
and simulation. From a designer’s perspective, these are the basic kinds of
games we can create for our players to experience.

Ultimately, game designers should play all sorts of games, regardless of their
own tastes. You never know when a randomizing strategy in a free-to-play
puzzle game might come in handy for a cooperative role-playing game. The
relationships between chance, strategy, skill, simulation, expressiveness,
performance, whimsy, role-playing, competition, and cooperation can be
recombined in different ways to create new play experiences—like a chef
combines different ingredients and cuisines to create new dishes and fusions.
The trick is thinking about games as a game designer. Instead of thinking
about your own experience, think about what created that experience—what
mix of competition or cooperation, of chance and skill, of role-playing or
simulation shaped the experience and how these were used in the design of
the game that generated it.

 Competitive play: A kind of play in which some players will win and
some will lose. The kinds of competitive play are player versus player,
player versus game, asynchronous competition, symmetrical
competition, and asymmetrical competition.
 Cooperative play: Play experience in which players work together to
achieve the game’s goals. Cooperative play might include symmetrical
cooperation, asymmetrical cooperation, and symbiotic cooperation.
 Skill-based play: Play that emphasizes player skill development in the
pursuit of the game’s goal. Kinds of skill-based play include active
skill and mental skill.
 Experience-based play: A kind of play focused on providing players
with an experience of the game through exploration, unfolding a story,
or communal engagement.
 Games of chance and uncertainty: Games that ask players to develop
strategies to allow for unpredictable moments or aspects of the game.
Purely chance-based games remove decision-making from the player
experience.
 Whimsical play: A kind of play that emphasizes silly actions,
unexpected results, and a sense of euphoria by generating dizziness
and a play experience that you need to feel to understand. Whimsical
play is often based on silly interactions, constraint as whimsy, and
conceptual absurdity.
 Role-playing: A game that generates stories through players inhabiting
different roles and following a loose set of rules through which all

sorts of possibilities can emerge, limited only by players’ imaginations.
Types of role-playing story generation include emergent storytelling
and progressive storytelling.
 Performative play: A theatrical form of play that generates dramatic
action and acting and often includes a good deal of player
improvisation. Performative play can generate unintentional
performance and conscious performance.
 Expressive play: A form of play that often subverts player choice in an
effort to clearly express and share something about human experience.
Expressive play might involve authorial expression or player
expression.
 Simulation-based play: A form of play that models a real-world system
and presents a point of view (sometimes political, sometimes in terms
of a player’s perspective on the world) about that system to the player.
Players might engage with a top-down simulation or a bottom-up
simulation.

Exercises
1. Choose one of your favorite games and describe it using one or more

of the kinds of play described in this chapter: competitive and
cooperative play, skill-based play, experience-based play, chance-based
play, whimsical play, role-playing, performative play, expressive play,
or simulation-based play.

2. Take the game you described in Exercise 1 and try to apply another
kind of play to it. What happens when a skill-based game becomes
more whimsical? Or simulation based?

3. Turn a competitive game into a cooperative one. How will the rules of
the game change? The goal?

4. Choose a game of skill and turn it into a game of experience, or vice
versa. How does the game need to be modified to turn it from one type
to another?

5. Redesign a game based primarily on chance and uncertainty (Candy
Land, roulette) to rely less on chance and include more player choice
and strategy. Try to play it with some friends. How is the play
experience different?

Chapter 4. The Player Experience

In this chapter we look at the kinds of knowledge players need to play
games. We look at the five layers of player experience: sensory, information,
interaction, frame, and purpose.
In the previous chapter we talked about the different kinds of play games can
create for players. But to play the games, we ask more of our players than
just using the actions to interact with the objects and other players inside a
playspace. Game designers, particularly videogame designers, need to
understand a little bit about cognition, a little about hand-eye coordination, a
little bit about information and interface design, and a slew of other topics
that help them design for people. As game designers work, they need to keep
in mind what the interface designer Jef Raskin called “human frailties,” or
an understanding of the limits of what people can and cannot do, and what
people are and aren’t good at.1 That’s what this chapter sets out to do—help
us take into account what we might call “player frailties.” We’ll think of the
amalgam of all these ideas and approaches as player-centered design. This
includes things like how players perceive the playspace, how much
information the game provides and how players process this information,
how challenge keeps them playing and developing their skills, and how the
game’s context impacts a player’s experience such as where the game is and
who is playing and watching.

1 The Humane Interface: New Directions for Designing Interactive Systems, 2000.

Action Theory as a Framework
The most basic way to understand what a game asks of its players is to
consider the principles of action theory. Action theory is a sociological
concept originated by Talcott Parsons2 as a way to understand the dynamics
of what happens when people encounter a given situation. Action theory
proposes the following cycle of interaction:

2 Talcott Parsons, The Structure of Social Action, 1937.

 Beliefs: A person has a set of prior experiences and belief systems that
frame how they understand the world. Let’s use three examples: being
hungry, seeing a friend, and playing Super Mario Bros.

 Reaction: Given these beliefs, we encounter a situation and we form a
reaction—I sure am hungry; look, there’s my friend; oh no, it’s a
goomba.
 Desire: This reaction leads to a desire—I’d like to eat; I’d like to say
hi; I’d like to jump over that goomba.
 Intention: This desire leads to the formation of a plan of action—I’m
going to pick a sandwich and drink; I’m going to walk over and say hi;
I’m going to run toward the goomba and then jump.
 Action: With an intention in place, the person then enacts the plan—
orders the sandwich and a drink from a waiter; calls out the friend’s
name and waves as they walk toward them; executes the moves to
attempt to jump over the goomba.
 Repeat: With the action completed, we begin the cycle anew, with the
outcome of the action causing a response from the situation that
requires us to once more react, establish a desire, create a plan, and
then conduct an action.

Within the cycle of action theory, we find so many important things to
consider about our players: how they understand a situation, what they want
from it, what they think they are able to do, what they are able to do, and
how they interpret the outcome of their actions. This provides a perfect
model for thinking about what we ask of our players anytime they play our
games and fits nicely with the action-outcome unit discussed in Chapter 3,
“The Kinds of Play”—whether it is the “bird’s eye” view of their learning
about your game, what they hope to get from the experience, and then the
actual experience they have; or the more detailed process of each decision
they make as they play your game.
The best way to think about this is as a layered process through which
players interact with videogames. In his book The Elements of User
Experience,3 Jesse James Garrett outlines five planes of user experience: the
surface (what we see and hear), the skeleton (the information within the
surface), the structure (how that information is organized), the scope (the
boundaries of what is and isn’t contained within the experience), and the
strategy (the purpose of the experience). We can transpose this model onto
how a player experiences a videogame (see Figure 4.1):

3 Jesse James Garrett, The Elements of User Experience, 2002.

 Sensory (the surface): What the player sees, hears, feels, smells, and
tastes when playing the game.
 Information (the skeleton): Within the sensory layer, the information
the player discerns about the game.
 Interaction (the structure): Given the sensory layer and the
information, what the player understands they can do while playing the
game.
 Frame (the scope): The player’s understanding of the game’s space of
possibility informed by their experiences as a player and more broadly
as a person.
 Purpose (the strategy): The player’s goals for the game.

Figure 4.1 The layers of player experience.

The Layers of a Play Experience
These five planes provide us with a model for thinking about what game
designers ask of their players. Instead of planes, we will refer to them as
layers. This better illustrates the relationship between each—a sequential yet
recursive process by which players interact with our games.

The Sensory Layer
Like any other human experience, play begins with our five senses. We see,
hear, and feel videogames as the most elemental aspect of our play
experiences. Understanding what it means to see, hear, and feel a game is
therefore quite important.
Let’s start with one of the more often-used components of videogames: the
player’s point of view. The dominant approach in AAA games is a three-
dimensional world seen either through the player’s eyes (a first-person
perspective) or from just behind the player (a third-person over-the-shoulder
perspective).4 These approaches are so commonplace that it doesn’t even
seem like there were any decisions to be made about how players see a
game. But one of the most important decisions in a videogame’s design is
how the player sees the game’s world—2D side view, 3D first-person view,
3D third-person view, and so on.

4 Want a full list of all the kinds of perspective? Read John’s essay on perspective in The
Routledge Companion to Video Game Studies, 2013.

Just as important is how the world is represented. Is it with super-simple
graphics pared down to a few pixels? Or is it hyper-realistic, with every
shadow and texture defined and refined? Or is it a game that uses no images
at all, but simply text or sound? Together, the way the player sees the world
and the way the world is represented have an impact on how the player
perceives their role in the game, determines what they want to do, and
interprets their progress toward the game’s or their own goals.
A good starting point here is Alabaster (see Figure 4.2)—a ‘fractured
fairytale’ and collaborative work conceived of by Emily Short with
contributions by John Cater, Rob Dubbin, Eric Eve, Elizabeth Heller, Jayzee,
Kazuki Mishima, Sarah Morayati, Mark Musante, Adam Thornton, and Ziv
Wities, with illustrations by Daniel Allington-Krzysztofiak. Alabaster is a
text-based game that draws on the conventions of books, or in the digital
world, early text adventures like Infocom’s Zork and, more generally, the
field of interactive fiction. It is a playable story composed of text and the
occasional image. Players take the role of a nameless woodsman tasked with
bringing Snow White’s heart to the Queen. Unable to bring himself to kill
someone so young, beautiful, and seemingly innocent, the woodsman kills a
deer and procures its heart. However, something about Snow White is
unsettling. The woodsman begins to question his perception of her and
whether, perhaps, she is not as innocent as she seemed. To truly know what

the woodsman should do, the player must learn more about Snow White. So,
from this point in the game, the player begins to ask questions and engage in
a conversation with Snow White.

Figure 4.2 Alabaster.

To move through the world and interact with Snow White and other objects
in the game, the player enters simple commands into a text prompt, such as
“ask”, “tell”, “north”, and “kick”, which turns these words into sentences
like this one: “ask where there is safe haven.” There’s an incredibly rich
number of responses from Snow White, authored by the many collaborators
on the project.
In the case of Alabaster, the entire story unfolds through a series of still
images and text. Outside the still images5 that accompany each major story
beat, the story unfolds in the player’s mind through reading the descriptive
text in the narrative. Because the player uses cardinal direction to move
around, they are likely thinking spatially, and therefore about the setting of
the action. But the majority of the gameplay occurs through conversation,

and it is here that players try to understand the characters and their
motivations and how the story will end.

5 In this case, the illustrations are actually procedural, meaning they are composed with code,
providing the player with many unique variations.

Merritt Kopas’s Hugpunx (see Figure 4.3) is an example of how 2D games
provide players with a simple vantage point in a game and simplicity in
terms of spatial interaction with the controls: for the most part, left and right.
The game is quite simple in its premise: move from left to right to “hug” the
green people and cats. Successful hugs result in happy, bouncy hug
recipients. The implied camera in Hugpunx is alongside the playspace,
almost as if it is attached to a tripod just in front of the playspace. There is
no depth, as all action takes place in a single plane. The actions available to
the player are therefore very simple—move left, move right, and hug.

Figure 4.3 Hugpunx.

In addition to the constrained movement, there is the simple, stylized
representation of the game’s world. Hugpunx uses a near-abstract pixel art
style to represent the people, cats, and environment. There is no foreground,
and there is no background. All of the imagery exists on a single plane on
which the action takes place. This allows players to really focus on the
interaction and goals of the game, as simple as they might be. Hugpunx uses
its player point of view as a way to keep things simple, light, and focused.

The decision space it presents is pared down to the essentials, with little
extraneous information save the plants in the environment. But even these
have a purpose; as they grow they help create a sense of excitement and
chaos that builds as the game unfolds.
What happens when game designers want to provide more options for
exploring the gameworld and seeing it from multiple vantage points?
Generally, this sort of experience comes through 3D game engines and 3D
representations of the gameworld. Take Blendo Games’s Thirty Flights of
Loving (see Figure 4.4). It combines a 3D environment and a first-person
perspective on the world with a blocky, flat-color, visual style to provide a
unique play experience. The player takes on the role of an unnamed
accomplice in a three-person team of...well, it’s unclear what they are, as
you’ll see if you play.

Figure 4.4 Thirty Flights of Loving.

Like all three-dimensional games, the primary actions through which you
perceive the game world are looking and moving. Thirty Flights of Loving
builds upon these in interesting ways, with most every other action implied
rather than carried out. The player can open doors and pick up some objects,
but the game really focuses on the idea of navigating and looking as the
primary actions in a story-driven experience. The player inhabits a world
that is three-dimensional, meaning you can move in all directions, through

the x (left/right), y (up/down), and z (forward/backward) axes. This opens up
all sorts of new information for the player to take in. But in Thirty Flights of
Loving, the space is designed so that there are seldom more than two choices
of where to go—back through the door the player entered through, or out
through another door into the next space. This allows the player to focus on
the environment they inhabit and creates natural changes in scene with every
exit and entrance.
In Thirty Flights of Loving, the spaces players can explore tend to be either
small and quickly examined or large but without a lot of extraneous
information. So the player is able to quickly “read” the space and make
choices about how to proceed. The visual style of the game—blocky,
simplified representations of people, animals, objects, and spaces—is in line
with the overall approach to players moving through and interacting with the
world. The two go hand-in-hand.
The way a designer represents their playspace and how they let players move
within it impacts what the player will do and how they will perceive the
game and make decisions about what they want to do. The more the designer
opens up the ways a player sees and moves, the more complex the
interpretation of the visual information becomes.
This brings us to the last of our examples in player point of view and player
perception, thatgamecompany’s Journey (see Figure 4.5). Instead of being
constrained to a single plane or having a tightly constrained space to move
through, Journey presents the player with an expansive world through which
they can explore.6 The beautifully rendered world establishes the game’s
goal—reach the mountain visible in the distance. To do this, the player
collects fragments of scarf that give her the power to float across distances
otherwise too far to jump. By keeping the challenge straightforward, players
can focus on exploring and enjoying the environment and the playground-
like atmosphere of sliding down hills and jumping from ledges.

6 The world is not completely open; there are moments in the game when the player must follow a
path, and there are limits to the world’s boundaries, but compared to the previous examples,
players have much more freedom of movement.

Figure 4.5 Journey.

The game has a stylized yet detailed world full of sand dunes, snowy
mountains, ancient runes, and detailed carpets and cloth. This is a big part of
the experience of Journey—enjoying the lush world the player character
inhabits. Despite all of the details and environments, players never get lost;
in each section of the game, the goal—the top of the mountain—is seen in
the distance. The use of the over-the-shoulder camera encourages the player
to see themselves inside the gameworld, enabling them to experience their
small scale in relation to the world, gauge their location when trying to land
on elements in the game, and see their progress as the scarf trailing behind
them lengthens.
Despite the fact that both of them are relatively easy games in terms of
challenge, Journey and Thirty Flights of Loving are still pretty hard games
for many people to play. There is a real accessibility issue with the implied
camera and idiomatic interfaces we find with 3D games and the WASD
keys-plus-mouse or the baroque, 15-plus buttons on console controllers we
use to navigate them. The simulation of three-dimensional space is hard to
wrap your head around, and getting used to the control mechanisms is even
harder. Even Alabaster, with its seemingly simple text interface, still
assumes knowledge of basic interactive fiction interaction schemes. On the
other hand, the simpler mapping that happens in two-dimensional games like
Hugpunx is much more accessible for a wider audience unfamiliar with the
conventions of 3D games.

Alabaster, Hugpunx, Thirty Flights of Loving, and Journey help us see how
the player’s point of view and vantage point on a game impacts their play
experience. They also show us how the visual style relates to this as both
part of the experience and as a way of focusing our attention and decision-
making.
This leads to questions designers might ask about player point of view and
perception to guide their work: How do you want your player to take in
information about the game world? And how does this relate to the player’s
experience of the world itself? Do you want everything to be clear and
focused, with no distracting elements? Do you want the player’s attention to
be on getting around in the world? Do you want the attention on the world
itself? Or on the goals? Or do you want the goal to be exploring the world?
All these are considerations when deciding how to let the player see, sense,
and move through your game.

The Information Layer
Here’s a question: what is an assumption we too quickly make about the
sensory layer of a videogame? The answer: that players know what they are
looking at. There is a difference between seeing and understanding, which
brings us to the information layer of the play experience. Within the field of
information science, the working model for how people make sense of things
is called DIKW—people first take in data, and from this build information,
which leads to knowledge they can put into use, and eventually wisdom that
allows deeper insight.
To turn data into information, we must first understand how we focus on the
bits that are relevant and apply our attention to them. Related to this idea is
the study of attention within cognitive psychology and how we respond to
and process sensory stimulus. Game designer Richard Lemarchand’s 2011
talk at the Game Developer’s Conference titled “Attention, Not Immersion:
Making Your Games Better with Psychology and Playtesting, the Uncharted
Way”7 identifies reflexive attention and executive attention as two forms
of attention that define a player’s understanding of what is currently
happening in the game. Reflexive attention is from the back and side regions
of the brain and is activated when loud noises, quickly moving objects, or
anything novel is presented to us. Executive attention (sometimes called
voluntary attention) refers to those things that we decide to pay attention
to, such as looking at a health meter, for instance, or reading a sign in the

road. Together, they help us understand the kinds of attention we are asking
the player to give our game and how to keep track of the number of things
we are asking our players to pay attention to.

7 Richard Lemarchand, “Attention, Not Immersion: Making Your Games Better with Psychology
and Playtesting, the Uncharted Way,” GDC 2011.

Let’s look at the beginning of Journey (see Figure 4.6) to help us understand
this. The player first sees a character standing on a sandy hill. This is a series
of data points—there is a figure in a cape, there is a hill, and it appears to be
made of sand. The player can intuit that the character is probably the player
character by virtue of the camera angle, the position the camera has
onscreen, and other subtle but important cues. Once the player begins to
move the sticks on the controller, they confirm that the figure is in fact their
in-game representation. And as the player moves their in-game character, the
sand-like material on the hill is confirmed to be sand by the way the
character displaces it as they move. This process moves the player through
data to information to knowledge—they now know the environment, who
they are in the game, and how they move the character through the
playspace.

Figure 4.6 The starting point in Journey.

This opening scenes in Journey utilize both our reflexive and our executive
attention. As the game begins, the player hears an orchestral tone begin to
rise and sees a field of shimmering sand. The tone activates the player’s

reflexive attention, as they use their executive attention to try to discern the
image on the screen. A jump cut shows them a wider view of the scene, and
more cuts lead to an image of the mountain, the sun, and a comet-like point
of light moving across the landscape, all activating the player’s reflexive
attention with each cut. Once the game’s opening animations complete, we
are brought to the moment described earlier: our character on a sandy hill.
Here the player uses their executive attention to begin to decipher where
they are and how to move.
At this moment in the game, the player could go in any direction they
wanted. But they are given a clue about the direction they should begin to
move toward: the mountain visible on the horizon. They always know how
to orient themselves, so they choose to move toward it as a goal. In theme
park design, the mountain would be referred to as a “weenie,” a term coined
by Walt Disney in reference to a boyhood experience luring a dog home with
a sausage, and used to describe an important aspect of his theme park’s
design.8 A weenie is a large architectural element placed to be visible from
many locations, serving as a visual magnet to orient and guide people toward
a location. The designers of Journey and many 3D games use weenies to
give players a visual reference point.

8 As referenced by Reece Fischer, “The Creation of Disneyland.” The Creation of Disneyland.
N.p., 2004. Web. 14 Jan. 2013.
http://universityhonors.umd.edu/HONR269J/projects/fischer.html.

Part and parcel with transforming what players see, hear, and feel in the
game is making sense of what is being seen, heard, and felt. Questions to ask
about how players will turn all of this sensory data into information and
knowledge include: Is every object in the game seen by the player, or are
some objects hidden? Is the information easy to access, intentionally vague,
or does it require lots of interpretation? How much information can players
take in during gameplay? How much are we asking players to focus on, and
are we providing the clues for players to know what information is relevant?
All these questions relate to the information space of a game: the possible
meanings a player can derive from a given game.
Take chess (see Figure 4.7) as an example. In chess, the players can see
every element in the game. The pieces on the board, their position, and the
pieces that have been captured. This is called having perfect information on
the game state. Nothing is hidden—except, of course, the thoughts of the
other player. In chess, yomi (a concept discussed in Chapter 3) plays a big

http://universityhonors.umd.edu/HONR269J/projects/fischer.html

role in the strategic fun of the game as players try to imagine what their
opponent might do on the next turn. As the player examines the chess board,
they take in the position of both players’ pieces, think about their short-term
and long-term strategies for winning, and how they might get closer to
capturing their opponent’s king. They have to think about how each kind of
piece moves, where their pieces are on the board, and which piece in
particular to move on their turn to advance their strategy.

Figure 4.7 Chess.
That’s a lot of information to think about around a single decision, isn’t it?
This is why chess works so well as a turn-based game. Players aren’t in a
rush to make their decisions since there isn’t a time constraint on their
actions (unless they are playing with a timer, of course). It is also why chess
works just as well in person as it does via correspondence. What chess helps
us understand is that everything a player sees becomes part of the
information they have to process to make decisions about what to do next.
Every time something happens in the game, the player has to analyze what
changed, why, and how that impacts the state of the game.
Android: Netrunner (see Figure 4.8) puts players into an imperfect
information space. In this two-player cardgame, players choose to be either
the Corporation or the Runner, each with a different goal in the game. The
Corporation has Agendas—cards that they must keep protected and hidden,
either in their hand or face-down on the table in front of them. The Runner

attempts to hack into the Corporation’s hand or the cards on the table to steal
enough Agendas to win the game. The Corporation wins by advancing
agendas and applying resources to them before they are captured. Each
player has data on the cards in their deck, though not of the order in which
they will appear. Each player also has perfect information about the cards in
their hand and that they have played. Both players have imperfect
information about the other player’s cards beyond those that have been
revealed through play. However, some cards allow the player to peek at the
other player’s cards, and there is a way to keep some cards revealed, so the
information space of the game fluctuates.

Figure 4.8 Android: Netrunner.
In addition to being an imperfect information space, Android: Netrunner is
an asymmetric information space. Because each player is playing a
different role, by a different set of rules and with different cards, each needs
to try to understand the other’s intentions and possible strategies as they are
playing. It demands a great deal of understanding—one might say empathy
—as players attempt to get inside the other player’s head and anticipate their
next move. It also certainly generates yomi, the attempt to guess what the
other player is thinking, and what player A thinks player B thinks player A is
thinking. Chess does this too, but in Android: Netrunner, the players think
differently—as a Corporation or a Runner, depending on your opponent. And

like chess, Android: Netrunner is a turn-based game; players can take time to
think about and make their next move.
Basketball (see Figure 4.9) is a very differently paced game than chess or
Android: Netrunner. Basketball is real time, forcing players to respond
quickly to each other’s moves, the location of the ball, and the position of
players on the court. The information space is perfect—players can look
around and see where everything of importance in the game is and what the
current state of the game is, such as who has the ball.

Figure 4.9 Basketball. Photo by Laura Hale. Used under CC 3.0 SA
Unported.

The challenge in the game is created by teams executing plays and
improvising within them to surprise the other team and gain an advantage in
moving the ball closer to the goal. Players feint moving in one direction and
take off in another. Or they pass the ball to a player who just opened up
because their teammate kept the defense from getting between the passer and
the passee. So, while the information available to players is perfect, the real-
time nature of the game makes it impossible to fully process all of the
possible moves of the other team, making gameplay unpredictable, and
ultimately, a lot of fun. Basketball is also a symmetrical information space

in that all players have access to the same information about the state of the
game—everyone can theoretically see who has the ball, where everyone else
is on the floor, what the score is, how much time is left, and so on.
This leads to questions designers might ask about the information layer to
guide their work: how much information do you want to provide to the
player? What kind of attention will players use to make sense of and react to
the information? Will it be reflexive or executive—thought out ahead of
time? Will they have perfect or imperfect information? In a multiplayer
game, will the information be symmetrical or asymmetrical? Will the game
present information in real time, or will it give the player time to consider
the information as they take their time to take a turn? How information is
presented, how much is presented, and in what kind of time-frame all impact
the player’s ability to make choices and understand their next move.

The Interaction Layer
To really make sense of the information space, a player needs to understand
how the information works together. In the Data-Information-Knowledge-
Wisdom model, this is the step where patterns in the data create information,
which in turn enables knowledge on which the player can make decisions
and act. This means the player needs to have a working mental model of the
game. There is often a gap between how something actually works and how
players think it works. This runs the gamut from actions, objects, the
boundaries of a playspace, and, most importantly, how broad and deep
players understand the space of possibility of the game to be. When a player
first plays a game, they are working off prior knowledge to help them
interpret the information space. As they continue to play, they slowly
develop a more specific understanding of your game until they are working
off the information from their prior experiences in the game to develop their
understanding of the game’s space of possibility.
anna anthropy wrote an exceptional essay about the first level of Super
Mario Bros. to think about how players learn to play a game.9 In it, anna
looks at the first thing players see in Super Mario Bros. A figure on the left
side of the screen looking to the right (Mario), the ground, and an unbroken
view of the sky above. The only thing the player can do—and it is clear from
simply looking at the screen—is move to the right. As soon as the player
moves Mario, they see the background moving, and a flashing brick with a
‘?’ appears, along with an angry-looking creature. Players learn to jump, and

in doing so, learn the primary action of the game: jumping. anthropy’s close
analysis of these first few seconds of Super Mario Bros. shows us just how
ingenious Shigeru Miyamoto and Takashi Tezuka’s design of the first level
is.

9 anna anthropy, “Level Design Lesson: To the Right, Hold on Tight” from her website,
http://auntiepixelante.com/?p=465, 2009.

Once a player understands what they are engaging with, they have to
understand their role in the game and how they enact it. This takes us to
affordances, an important concept in cognetics. As Donald Norman defines
them, affordances are “the perceived properties of the thing, primarily those
fundamental properties that determine just how the thing could possibly be
used.”10 In other words, affordances are what we think things do before we
actually interact with them. We see a tool with a handle, and we assume we
can grip it. We see a book, and we assume we can read it. We see a joystick,
and we assume we can use it to navigate something on a screen. These are
the perceptible affordances of an object. Affordances also help us make
what are called correct rejections—we can tell what something isn’t used
for as well. So we can guess a pillow won’t work as a hammer or that an
object in the background of a game isn’t of the utmost importance.

10 Donald Norman, The Design of Everyday Things, pg. 8, 1988.

There are two additional kinds of affordances: hidden affordances and false
affordances. A hidden affordance is that which is present in an object but is
not obvious from its appearance. You wouldn’t realize you can drink from a
hat, but you can; you wouldn’t know a brick up in the air could be hit in
order to release a coin, but it will, sometimes. False affordances are
misinterpretations of what an object can do. We see a wax apple and think
we might be able to eat it; we see a door in a 3D game but cannot open it.
In games, affordances help us understand the complex relationship between
what players see, what they understand, and what they think they can do
when playing a game. As players look at and listen to our games, they are
also constantly assessing what they can and cannot do. The thing is, with
videogames, players are almost always dealing with one or more levels of
separation between the player, the game’s interface, and the game’s visual
and auditory feedback. Videogames are played by looking at a screen and
then interacting with the game via a separate game controller (fingers
included). And even when there is a direct contact point, as on a touch
screen, the gestures seldom directly map onto what happens onscreen. This

http://auntiepixelante.com/?p=465

introduces a gap between our perceptions—what we see on the screen and
hear through the speakers—and our actions—the decision-making that
results in button presses, stick movements, and finger gestures.
In this screen in Braid (see Figure 4.10) by Number None, Inc, the player
character, Tim, has just grasped the key from a precarious position down in a
pit with one of the enemies in the game. In this case, the player has learned
that the goomba is an enemy to be avoided because of their unfortunate
encounter with it earlier in the game. Visually, it certainly has an expression
that seems to indicate “stay away.” And that is what the player has learned to
do. The key’s affordances are even more clear because of the player’s
previous experiences with keys in their life. They open doors and are meant
to be picked up. So it makes sense in the game that the key is something to
grab and use in doors. In this case there are several doors—one that we came
out of, on the left, and a door with a big keyhole blocking the way to another
door on the right. It’s clear to the player that they should make their way
over to the door with the big lock to use the key they have just picked up.
This large keyhole provides the player with the perceptible affordance that
the door can be unlocked with the key. Finally, as they have played, the
player has learned that they can drop down into pits like this without getting
hurt (as long as the enemies are avoided). But how to get back up? Well, yet
another clue came to the player earlier in their play session. On the screen, a
prompt to press a button on the controller to rewind time was given. After
this one-time prompt, the player learned through trial and error how to
rewind time. Being able to rewind time is a hidden affordance in Braid, one
that we learn only through playing.

Figure 4.10 The affordances of Braid.
Beyond the peculiar reality that is videogame interaction, game designers
also have to consider how people will engage with the interface of the game.
Gillian Crampton-Smith proposed five characteristics of well-designed
interactivity: clear mental model, feedback, navigability, consistency, and
intuitiveness.11

11 Articulated by Gillian Crampton-Smith in the foreword to Bill Moggridge’s book, Designing
Interactions, 2006.

Clear Mental Model
Crampton-Smith’s five principles start with a clear mental model. In the
context of videogames, this refers to the player’s understanding of the basic
elements of a game—the playspace, the rules that govern their actions and
interactions with the objects (and other players, if there are any), and how all
these relate to the stated goals (and those the players bring themselves)—
build up to a coherent theme. Do players “get” how the game works?
This extends to the points of contact between the player and the game: the
screen, the speakers, the control scheme and how it presents feedback. Is the
feedback supporting the player’s mental model of the game? Is it confirming
player actions and providing qualitative evaluation of the impact on the
game’s state?

Besides confirming player inputs, is the game navigable? This refers to the
player’s understanding of how to move through the playspace but also how
they engage the game as a whole. Do they know how to access important
menus? Do they understand the full range of actions available to them and
what impact they have on the space of possibility?

Feedback
What helps players understand a game? “Reading” a game and performing
within the players’ understanding of the game’s goals, rules, actions, and
objects hinges on the quality of the feedback about their actions. Giving
players feedback on a very granular level is important, as the loop between
actions and outcomes we discussed in Chapter 2, “Basic Game Design
Tools,” is how players connect what they see, what they know, and what
they do. Feedback is what allows them to assess what they are doing and
how well they are doing it.
A particularly well-done feedback system is found in area/code’s Drop7, a
turn-based puzzle game in which players try to eliminate advancing columns
of numbers by matching up the numbers of discs in a column or row with the
discs found along the top. Every time the player successfully drops a disc to
match a column or row, seven unique forms of feedback are provided: a
sound effect plays, accompanied by a sequence of visual effects: the
impacted row or column lights up, the disc rotates, a particle effect radiates
out from the disc, the disc shrinks, the score received appears above the disc,
and the remaining discs in the column animate down to the new position. All
this works together to convey information to the player.
Despite so many levels of feedback, people new to the game can still have a
hard time understanding what is happening. They may understand that a disc
was eliminated, but they may not know why. Over time, through repetition,
the player will likely begin to learn that a disc is eliminated when the
number on the dropped disc matches the number in the row or column. But
this can only happen through the repetition of receiving well-designed
feedback. This comes back to the data-information-knowledge-wisdom
progression of how players make sense of a videogame. The movement from
information to knowledge comes by trying things out and building working
mental models of the “laws” of a videogame’s space of possibility.

Navigability
The final characteristic of well-done interactivity is navigability. In the most
literal sense, this speaks to movement through space. Thinking back to our
Journey example from earlier in the chapter, the mountain peak in the
distance provides the most general sense of navigability—the player knows
which direction to head. But navigability also relates to the smaller scale
actions of knowing how to move through the information space. For
Journey, this means knowing how to look and move. But what about the
more abstract game Drop7? Here, the long-term navigability is knowing the
game’s goal (scoring the most points by keeping the discs from reaching the
top of the screen), but also understanding the available actions and
interrelationships between the numbered discs. And on the micro level, it’s
about knowing how to move and drop the discs into the playspace.
Navigability in games relates to players understanding their options within
the game’s space of possibility. And related, navigability relates to players
being able to form goals, whether they are set by the game’s designer or by
the players themselves. For a game to have navigability, it must also have a
clear mental model, provide feedback, be consistent in its response to
players, and allow the players to develop intuitive understandings of how to
interact with the game’s component parts.

Consistency
For a player to understand the feedback received from a game, they need
consistent communication. In the case of Drop7, consistency means the
game responds to player actions in the same way every time—sliding and
releasing a disc over a column always releases the disc; discs always fall
until they reach the highest disc in that column; if the math adds up, the
appropriate discs break and move through the seven forms of feedback. If
the game responds differently at different times, it makes it difficult for the
player to understand their role in the game. If, say, sometimes touching on
the active disc makes it break, or it immediately falls upon contact or falls
while the player’s finger is still touching it, the player would be confused.
Players need consistent responses from the game to be able to understand
their relationship to the game.

Intuitiveness
Learning how to play a game is not a trivial undertaking. Making it as easy
as possible for players to learn how to perform the actions and interactions
of the game is important. This leads to the next characteristic of well-
designed interactivity: intuitiveness. The more a game can become intuitive
for players, the less mental and physical energy they have to spend to simply
make the game go. Take basketball as an example. When players first learn
the game, every action takes deliberate mental and physical focus—finding
the rhythm of dribbling, getting the hang of how to arc a shot to go through
the basket, sorting out how to move their feet to stay in front of the other
team’s players, and so on. Over time, through lots of repetition, players are
able to develop an intuition about how to play without having to spend so
much mental and physical attention attempting to perform basic actions.
Once players gain an intuitive feel for the game, they are free to focus on
their play experience rather than on the mechanical or mental interaction
with the game.
In a game like Drop7, the discs behave in intuitive ways. They fall,
following the familiar laws of gravity, and then they break, revealing what’s
inside—like the inside of an egg, a package, or any number of other things
we are familiar with in life. If a disc has broken, it is then weakened and
disappears. This, too, is intuitive based on our understanding of the circle of
life as well as our possible familiarity with other, similar games like Tetris.

Failure
In addition to Crampton-Smith’s five characteristics, there is one more
important concern for the interaction layer—failure. Just because we can see
and hear a game, can make sense of the information it is presenting us, and
can determine an action we want to perform doesn’t mean we’ll perform it
well. It also isn’t a guarantee that it was the right action to perform or that
we even really understood what we were seeing well enough to make a
smart decision in the first place.
Players often make mistakes when playing games. This is a big part of how
we learn them and, for certain kinds of play experiences, where the pleasure
is found—overcoming the challenges of understanding and then performing
within the game’s space of possibility. As Jesper Juul notes in The Art of
Failure, there are three kinds of failure stemming from the psychology-based

concept of attribution theory.12 We believe failures are individual flaws of
the person who committed the failure (I flapped when I should have rolled in
Flywrench), flaws in the thing itself (that procedurally generated level in
Spelunky was impossible to get through), or flaws in the circumstance (the
subway car jostled right as I was picking a tile in Threes, causing me to
accidentally move in the wrong direction).

12 Jesper Juul, The Art of Failure: An Essay on the Pain of Playing Video Games. pp. 15–18,
2013.

Juul’s research into failure involved watching scores of players playing
games and interviewing them about their experiences. For game designers,
one of the most important findings Juul had in this work is that there are
some failures that feel better to the player than others. And these are player
failures—flaws in the player. Seem counterintuitive? If we think about it, it
makes sense. A player feels better about the failure being their own because
they believe they can improve their skills with more playing. A player who
fails due to a flaw in the game—or a perceived flaw in the game—will likely
quit playing the game entirely. As a designer, it is important, then, to
recognize that incredibly difficult levels with only one solution may feel like
a flaw in the game to the player if they don’t perceive that the level is
possible to beat. As Juul points out, failure often leads to players devising
new strategies and trying new things in the game to succeed. So designing to
embrace multiple strategies, is, well, a good design strategy. Take this with a
grain of salt; some games, particularly puzzle games, may have only one
solution, and some games may have little strategy or failure at all.

The Frame Layer
Play experiences do not take place in a vacuum. They are part of the lived
experience, preceded by everything the player has seen or done before
playing, and followed by everything else the player will do after. This is
what we call the frame layer. All the time living, leading up to playing a
game, creates a frame around how players perceive, experience, and build
understanding. If someone has never played a videogame before, they might
need some help understanding the basics of how videogames work. (Press
this button, and the character on the screen will jump.) On the other hand, if
someone is a videogame aficionado, they won’t need an introduction to the
basics. Players have come to expect that pushing a button, in fact, pushing
the X button, probably gets their onscreen avatar to jump. Frame provides
players with expectations, giving them reference points when they first
encounter a game.
Beyond time spent playing videogames, time in the world frames how
players expect things in the game to work. If a player sees a large anvil
poised on the edge of a cliff, they might imagine that it could fall and crush
whatever happens to get under it. This could come from their experiences in
life with heavy anvils or their mediated experiences of falling anvils
depicted in Saturday morning cartoons. Frames of reference for deciphering
what the game is asking of players come from a variety of places: daily life,
movies and television, books and stories, and, of course, games. In addition
to understanding the basic physics of a precarious anvil, these frames might
come from the player’s own values, philosophies, and cultural contexts to
help them interpret the information the game is giving them.
Let’s look again at the game Perfect Woman by Lea Schöenfelder and Peter
Lu (see Figure 4.11). The game plays off cultural framings of female gender
roles, generating some unexpected juxtapositions of identities and interesting
choices for players. Players are confronted with choices such as, once
reaching the age of 60, becoming a foreign minister or a call girl. This
choice can be further complicated by what they were before. If they were a
street kid leading a gang, it may become impossible or very hard to be an
MIT professor. As a child worker, an easy path may be found taking care of
the player character’s brother during the war or becoming a suicide bomber,
but the player might want to challenge themself to be an eager student.
Difficulty is based on how challenging it is to maintain and switch poses that
match the player’s onscreen female identity. Perfect Woman offers up both

gender stereotypes and anti-stereotypes with a continued commentary on
how our life choices provide us with varying levels of difficulty and struggle
—all deftly modeled by asking us to contort our bodies to match with the
woman we have become. It questions common framings of gender roles and
asks players to open their minds to the diversity of experiences being a
woman is in varying places around the world and stages of life—providing
new frames of reference for female roles.

Figure 4.11 Perfect Woman.
Sometimes games surprise us and lead us to question the frames we place
around them. An example of this is Brenda Romero’s gallery game Train
(see Figure 4.12), from her “The Mechanic Is the Message” series that
depicts different historic events resulting in human tragedy. In Train, the
player is presented with the task of transporting wooden player pieces from
one end of the board to the other by cramming them into train cars. Some
clues are given through the materials of the game. The board we are playing
on is a broken window. The train tracks sitting atop this go only one way to
their terminus. And the rules we are given are typewritten, with the last page
still in the scroll of a vintage German typewriter. When we complete our
task, the meaning of all of this is revealed, and what at the start seemed like
an innocent game of transportation logistics is quickly flipped on its head.
We won’t give away this ending; but suffice it to say that you have just

participated in something that you would never have imagined. At the end,
our frame for the game has zoomed out to include what we know of history
and led us to question the idea of following rules and orders and how our
early framing of the game was naive.

Figure 4.12 Train. Photos by John McKinnon.
Games are interpreted through experiences and references that frame our
understanding of them. Perfect Woman plays off of these frames, subverting
our notions of female roles and life stages. And as we see with Train, they
can also provide us with new frames around our understanding of history
and human experience.

The Purpose Layer
This leads us to the final of our five layers of player experience and to the
question, why? Why has the player decided to play this game? What do they
hope to get from it? And what do they actually get from it? Players bring all
sorts of intentions to their play experiences. In the three previous chapters,
we spent a lot of time talking about goals from a game design perspective.
But players have their own goals, too. The game designer Richard Bartle
looked closely at players of early text-based multiplayer adventure games
(called MUDs, or Multi-User Dungeons) to come up with four core player
types: achievers, explorers, socializers, and killers.13 While Bartle developed
these against a particular kind of game, they provide a useful model for
thinking more broadly about what players look for in a play experience.

13 Richard Bartle, “Hearts, Clubs, Diamonds, Spades: Players Who Suit MUDs”
http://mud.co.uk/richard/hcds.htm.

Achievers
Achievers are interested in setting and obtaining goals in a game. Sometimes
these players focus on the stated goals—win, collect all the coins, complete
every optional mission. In this case, we could think of these players as
“completists,” as they want to experience everything the game has to offer.
So in a game like Tale of Tale’s The Path, an achiever would not only play
all six characters (plus the unlocked seventh character), but also make sure
to collect all 36 objects scattered throughout the game, but also 144 flowers
found throughout the environment. Or in anna anthropy’s Queers in Love at
the End of the World, an achiever would play until they’ve moved through
every possible combination of decisions within the story.
Sometimes achievers set their own goals for a game. This is where things
like speed runs of Derek Yu’s Spelunky, no-kill playthroughs of Dishonored,
or permadeath plays of Far Cry 2 fit. Other times, players set more
intangible goals for themselves. In Dona Bailey and Ed Logg’s Centipede, a
player could attempt to clear out all the mushrooms, which is within the
space of possibility of the game for sure but isn’t an established goal. And
then there are the legions of seemingly impossible things players have done
with Minecraft, all of which were player derived.

http://mud.co.uk/richard/hcds.htm

Explorers
Explorers like to understand the full breadth of a game’s space of possibility.
So if an explorer plays Proteus, they want to walk the full expanse of their
island or simply wander the woods in the University of Southern California’s
Game Innovation Lab’s Walden, a game based on Thoreau’s On Walden
Pond. Where achievers often seek validation or measurement of their goals,
explorers are content to simply understand the game more fully. Another
way to think about this is focusing on coming to know the people, places,
and spaces rather than the stated goals of a game.
Explorers also want to know the full potential of the actions and objects
within a game. In other words, they are really interested in understanding the
full breadth of a game’s space of possibility. They want to know every
possible direct outcome of an action, but also every indirect outcome. They
want to know what happens when you spend too much time on the frozen
pond in Walden, the underlying logic deciding the next tile in Threes, or the
limits of swimming in the ocean in Proteus. They want to play Spelunky over
and over until they have seen as many configurations of the environment,
objects, and enemies as possible.

Socializers
Socializers are less interested in the actions and objects unto themselves than
they are the other players. This category of players above all enjoy
interacting with other players. They will do this inside the parameters of the
designed communication channels, but also within the broader space of
possibility of your game. Let’s take a game like Portal 2. The co-op
campaign is designed to encourage player communication—without it,
completing the challenges will be really hard. So the game is designed to
encourage socialization among all players. Similarly, Leah Gilliam’s tabletop
RPG Lesberation is designed to get players talking, planning, and acting as a
unit.
Players who seek out socialization in games will find it in games that on the
surface don’t seem appropriate. Basketball, when played in a more casual
manner, is a great way to hang out with friends. Dungeons & Dragons is a
perfect way to spend an evening chatting and snacking while unfolding a
legendary story. Local multiplayer games like Jane Friedhoff’s Slam City
Oracles similarly encourage people to spend time in one another’s presence.

Killers
The last group in Bartle’s model are the killers—the players who like to
impose their will on other players. Sometimes this takes the form of help,
but more often, it takes the form of attacking, thwarting, or otherwise
disrupting other players’ experiences. These are the players who not only
want to win, but dominate the game. So in Dog Eat Dog, if killers are on the
indigenous people’s team, they will try to control the decision-making
process.
Of course, killers also want to mess up other players. So in basketball, they
want to keep the opponent they cover on defense from ever scoring. If they
are playing Johann Sebastian Joust, they will not rest until they outdo
everyone else—sometimes to the point of embarrassing the other players.

Beyond Bartle’s Player Types
Each of these player types—achievers, explorers, socializers, and killers—
might be tendencies players have as individuals, or they might represent the
changing goals of a single player in one game as they continue to play. The
important lesson for designers is to understand that not everyone will
approach your game with the same mind-set. When designing, imagine how
each type will approach your game and how these tendencies can be
leveraged to strengthen your design.
Of course not all play experiences can be neatly captured inside Bartle’s
achievers, explorers, socializers, and killers. And not all designers create
games thinking about the expectations or wants of different kinds of players.
Particularly with more authorial games like Porpentine’s Howling Dogs or
Molleindustria’s The McDonald’s Videogame, players have a role in the
game, but not necessarily in defining the kind of play experience they will
have. Think of reading a novel or comic—we have no expectations that we
can explore the novel in unexpected ways. Instead, we settle in for the
experience the writer provides. The same can be said about certain play
experiences. Playing Kentucky Route Zero is more enjoyable if we play to
experience what the gamemakers created rather than trying to pigeon hole a
particular play style into the game.

Summary
To really understand the design of a game, you have to consider what that
game asks of its players. How does a game draw on a player’s senses? What
kind of (and how much) information does the game provide a player? How
does a player understand their role in the game? What other life experiences
and knowledge are likely to inform a play experience? What kinds of
expectations will a player bring to their play experience? These questions are
best understood by taking into account a series of theories drawn from
sociology, psychology, information science, and related fields.

 Action Theory: The sociological understanding of what happens when
people interact with things. People have beliefs that shape their
understanding of things, which lead to reactions to what is going on
around them, which lead to desires, around which people create
intentions that lead to actions.
 Layers of Player Experience: Players move through five different
interpretive acts when playing a game: the sensory, or what the player
sees, hears, and feels; the information, or the data the player takes in
about the game state; the interaction, or what the player understands
they can do; the frame, or the broader interpretation of the play
experience; and the purpose, or the goal of the play experience.
 Attention: Many things draw on a player’s attention during gameplay.
Executive attention is what we are intentionally focusing on while
playing. Reflexive attention is caused by things that grab our attention
away from our intentional focus like loud noises, visual distractions,
and similar phenomena.
 Information spaces: Games have information spaces that we explore
as players. Perfect information spaces are those in which everything to
be known about a game is visible to the player. Imperfect information
spaces are those in which some information is hidden from players
either by the game itself or by other players.
 Affordances: The perceived properties of a thing that suggests to
people what that thing is used for. Affordances break down further into
four subcategories: perceptible affordances, or what we assume a thing
does; correct rejections, or what we think it doesn’t do; hidden
affordances, or what a thing does that isn’t obvious; and false
affordances, or misinterpretations of what a thing does.

 Crampton-Smith’s five characteristics of well-done interactivity: A set
of five properties present in all good interaction design: mental model,
feedback, consistency, intuitiveness, and navigability.

 Mental model: The way a player perceives a game to work, both in
terms of what they should do to play, but also what their actions
mean within the game’s space of possibility.
 Feedback: The game provides reassuring feedback so that the
user/player knows they have affected change in a meaningful way.
 Consistency: Consistently and logically builds upon the
commitment the player makes to learning and playing the game.
 Intuitiveness: Allows the player to focus on the play experience
rather than the mechanical inputs required to play.
 Navigability: A clear and well-designed path through the play
experience.

 Failure: There are three kinds of failure encountered through
gameplay: individual flaws that are perceived as the player’s fault;
flaws in the game that are perceived to be caused by a bug or error in
the game; and circumstantial flaws caused by an external force.
 Player Types: Richard Bartle’s four kinds of players are achievers,
explorers, socializers, and killers. Achievers are interested in obtaining
a game’s or their own goals. Explorers like to understand the breadth
and depth of a game’s space of possibility. Socializers play games to
interact with other players. Killers want to impose their will on other
players.
 Beyond Player Types: Not all games are designed to enable play styles
within the space of possibility of the game. Particularly in authorially
driven games, the purpose layer is simply having the experience
planned by the gamemakers.

Exercises
1. Choose a simple game like tic tac toe or jacks to play. Use the

principles of action theory to consider your play experience.
2. Choose a videogame and imagine what would happen if you changed

the player point of view. If it’s top down, how would the gameplay
differ if it was side-view? 2D to 3D?

3. Pick a game and consider the mental model you have for how the
game is played.

4. Watch people playing a challenging game. Create a log of all the
moments of failure that happen. Categorize each instance of failure as
either individual flaw, flaw in the game, or circumstantial flaw.

5. Pick a multiplayer game you like to play. Play it four times, each time
modeling one of Bartle’s four player types.

Part II: Process
 Chapter 5: The Iterative Game Design Process
 Chapter 6: Design Values
 Chapter 7: Game Design Documentation
 Chapter 8: Collaboration and Teamwork

Chapter 5. The Iterative Game Design Process

Making games is an iterative process that helps game designers understand
and refine their games. This chapter introduces the steps in the iterative
cycle: conceptualize, prototype, playtest, and evaluate.

The Origins of Iterative Design
Designing games is challenging—think no further than the concepts and
principles introduced in the four chapters of Part I—the basic elements that
make up games, the tools we have to design play experiences, the incredible
range of play types, not to mention the things videogames ask of players.
Compounding all this is the fact that game designers can’t really “see” their
designs until they are played, and their games can’t be played until they are
made.
This is where the iterative design process comes in handy (see Figure 5.1).
Iterative design is a cycle of conceptualization, prototyping, testing, and
evaluation. Iteration is an adaptive process whereby designers move
through cycles of conceiving of an idea, creating a prototype that embodies
the idea, running playtests with the prototype to see the idea in action, and
then evaluating the results to make the idea better. Adaptive processes stand
in contrast to predictive processes in which the final product is well
understood and can be produced without having to make changes to its
design. Where predictive processes assume the designer is going to be right
the first time around, adaptive processes leave room for error, but also new
ideas that can improve upon the original.

Figure 5.1 Second order design diagram nested in an iterative design
diagram.

An early version of iterative design comes from Walter Shewhart’s work at
Bell Labs in the first half of the twentieth century: the “Plan-Do-Study-Act”
cycle.1 Shewhart wanted a process that increased the quality and consistency
of Bell Lab’s products and services. So he created a modified version of the
scientific method that would help the company improve upon those metrics:

1 Andrew Walter Shewhart, Statistical Method from the Viewpoint of Quality Control. 1939.

 Plan: Identify the problem that needs attention.
 Do: Design a solution to the problem.

 Study: Develop statistical tools for analyzing the success or failure of
the design.
 Act: Repeat the cycle if the results of the study find problems with the
design solution.

Around the same time, the industrial and theatrical designer Henry Dreyfuss
began to approach product design from a similar perspective.2 Instead of
focusing solely on the object, Dreyfuss wanted to take into account the
person who used the telephone, vacuum cleaner, or typewriter he designed.
His goal was simple but unexpected: understand the experiences his designs
provided, and refine the design to better meet the functional needs of the end
user. Dreyfuss’s process involved a similar set of steps to Shewhart’s (not a
surprise, as Dreyfuss likely worked under Shewhart at Bell Labs):

2 Henry Dreyfuss, Designing for People. 1955.

 Think: Consider the cause of the problem, and then use brainstorming
techniques to consider solutions.
 Sketch: Develop the most simple and efficient means of exploring the
most promising solutions.
 Show: Share the sketches, whatever form they may take, with
stakeholders (clients, potential users, and so on).
 Evaluate: Reflect on the responses from the designers, clients, and
users to determine the effectiveness of the solution and to more fully
understand the problem.

In both Shewhart’s and Dreyfuss’s models, the design process unfolds in an
incremental, cyclical process. Where Shewhart relied on hard data to
improve product consistency, Dreyfuss used the then-emerging fields of
ergonomics and human factors to consider the functional, experiential, and
emotional responses to his products.
A more recent influence on the iterative game design process comes from
software development and Human-Computer Interaction (HCI). Both of
these use approaches derived from Shewhart and Dreyfuss:

 Requirements: What is the function of the software or hardware?
 Prototype: Based on the requirements, create a functional prototype.
 Review: Have all stakeholders use the prototype and provide feedback.
 Revise: Based on the feedback, revise the requirements and plan.

It is from these three foundations that the iterative game design process
emerges. While some people approach game design from a perspective of
metrics and statistics, most gamemakers take a more intuitive approach. And
while some use a more traditional predictive process, most embrace the
adaptive methods of iteration that allow game designers to design and refine
the game through successive iterative loops.
This is because, unlike phone infrastructure, typewriters, and ATM
machines, games are experiences and expressions more than tools or
functional products. Games are about the play-driven moment-to-moment
events, while typewriters and ATMs are a means to an end. Game designers
are therefore addressing a mix of gamemaker intention and player
experience. As a result, the four-step iterative game design process (see
Figure 5.2) is a little different:

 Conceptualize: Develop an idea for the game and its play experience.
 Prototype: Make some aspect of the game’s design into a “playable”
form.
 Playtest: Have players play the prototype to see what kind of
experience they have.
 Evaluate: Review the results of the playtest to better understand and
strengthen the game’s design.

Figure 5.2 Iterative design diagram.
This is how the iterative game design process works: a series of steps toward
the complete design of a game. Each loop through the cycle is an iteration on
the design of a game: an incremental step toward better understanding the
game being made so that the designer can work out the full design of the
play experience. Sometimes an iterative loop will help the designer flesh out
and tighten up the game’s design; sometimes an iterative loop will point out
problems that break aspects of the design. Either way, it’s all part of the
process toward a finished game.

The Four Steps
Let’s look at each of the four steps in more detail: conceptualize, prototype,
playtest, and evaluate.

Step 1: Conceptualize
In the beginning, there’s just an idea (see Figure 5.3). And it could come
from anywhere. Maybe it’s a dream about unicorns jousting with dinosaurs.
Or, it’s something from everyday experience, like walking through the park
or having a difficult conversation with a loved one. Maybe it starts with an
idea for a cool action or an unusual use of a common game object. Maybe it
starts with the need to explore or share a feeling that is difficult to put into
words. In other words, a game concept can start from anything.

Figure 5.3 Conceptualize, the first step in the iterative cycle.

The conceptualization of a game begins with a number of different
techniques to generate and shape ideas at the beginning of the game design
process and continue to support the design through successive iterative
loops. The main thing to keep in mind is that all that’s needed is a kernel of
an idea. It’s not important to have every detail figured out. In fact, the thing
to arrive at in this earliest stage is not an answer, but a simple, “How might
we...” question.3 For example, “How might we make a game where unicorns
joust with dinosaurs?” or “How might we share the feeling of walking

through the first snow of the year?” This question will become more refined
with time and will generate even more questions. But at the start of the game
design process, all that is needed is this one question.

3 This question is from a method used by the design consultancy IDEO, and one we find
incredibly helpful in the conceptualization stage of the game. “How might we” and other design
exercises can be found on IDEO’s DESIGN KIT project: www.designkit.org/methods/3.

Once a basic question is in place, the next step is brainstorming.
Brainstorming is a process with specific rules meant to help participants
explore all the possibilities around an idea or question. In fact, brainstorming
is like a game—one that generates as many concepts as possible. And those
concepts come in the form of even more questions, ones that begin with
“what if...?” For example, “what if unicorns and dinosaurs joust while
driving monster trucks along a rickety bridge?”
Another important point about the conceptualization phase is that there is a
difference between a game’s concept and a game’s design. The concept is
just that—an idea, a theory about what might make a good game. As we
discussed in the Introduction to this book, game design is the creation of
“blueprints” for a game. Turning an idea into a design requires that the
designer structure the idea so that it can be used to produce prototypes,
which are then playtested, the results of which are then evaluated to see what
they say about the original idea. And from there, the process loops back
around to conceptualize and the expansion, revision, or refinement of the
game’s design. Part of this process involves thinking through and answering
more questions in the design process, including using design values as a
way to identify the experiential and formal characteristics of the game.
We’ll go into more detail on conceptualizing and designing in Chapter 9,
“Conceptualizing Your Game,” and design values in Chapter 6, “Design
Values,” but for now, the important thing to know is that a designer doesn’t
need much more than an idea and a question to get started creating a game.

http://www.designkit.org/methods/3

Step 2: Prototype
The second step in the iterative game design process is turning the game idea
into a prototype (see Figure 5.4). The best way to figure out how the game
will look, feel, and act is to dive in and start making it. The faster the game
moves from the pure ether of ideas and into a prototype, the closer the game
will get to showing the kind of play experiences it can generate. The key to
prototyping is to turn the most promising “what if...” question from the
brainstorm, or a combination of “what ifs,” into something tangible. That
could be paper, quick and dirty code, even the designer’s own body
performing the actions of the game. The cool thing about prototyping is that
it will help ideas get even more developed and might even lead to a
discovery that would have never come up during the concepting phase. This
is the point of the iterative process. Every step along the way initial ideas
evolve—from a pie-in-the-sky idea about jousting unicorns to a fully
designed game. It isn’t necessary to figure it all out in the beginning; being
open to the whole process and where it takes the game is the important thing.

Figure 5.4 Prototype, the second step in the iterative cycle.

Prototypes should remain focused on the ideas and questions from the
concepting phase, including the “what if...?” question. Prototyping requires a
game designer to get more concrete. So, in the jousting unicorns and
dinosaurs example, prototyping around “what if unicorns jousted with
dinosaurs?” requires some understanding of what it means for these
creatures to joust, where it would happen, and how players would
participate. To keep things focused, the team might decide to prototype on
paper by making little cutout unicorns and dinosaurs that they move around
on a table. Or maybe they get some rough illustrations moving in 2D
onscreen.
There are a lot of different kinds of prototypes, each suitable for different
stages and questions. We’ll go more into these and the prototyping process in
general in Chapter 10, “Prototyping Your Game.” For now, the most
important thing to know is that the faster prototypes are made, the more
quickly the game’s design will start to take shape.

Step 3: Playtest
Once a game designer has a prototype made, they will want to playtest (see
Figure 5.5). After all, a game designer doesn’t really know what the game is
until they test it. Playtests reveal what is or isn’t working in a game’s design.
In other words, the playtest is the answer to the “what if...?” question the
prototype asks. In fact, playtesting is the one step in the process that we end
with answers, rather than questions. And not only answers in the form of
seeing what happens when playing with a prototype that asks “what if
unicorns jousted with dinosaurs...?” Answers to other questions as well, like,
“Do players understand the goal of the game, and what they are striving for?
Do players have the hoped-for emotional response? Do players get the
game’s message? Is the user interface clear or difficult to understand? And,
is there clear feedback about how well the player is doing in the game?”

Figure 5.5 Playtest, the third step in the iterative cycle.

Playtesting is often the hardest and most revealing part of the iterative game
design process. Often, what seems like a great idea that makes sense in a
prototype falls apart when players get ahold of it. This might feel like a bad
thing, but it’s really a blessing in disguise. Seeing what fails in a playtest
also sheds light on what is needed to fix it and make the game better. Failure
is just part of the process. This is the most important lesson of the iterative
process.
In the same way that a prototype can take different forms, there are many
different types of playtests. Two of the most basic kinds are internal and
external playtests. Internal playtests among the designers of the game are
essential—and often the first kind of playtest the team engages in. External
playtests are equally important and can involve friends, other game
designers, the target audience, and more. No matter the kind of playtest, one
of the most important things to do is capture the results. Whether simply
listing the comments from playtesters or problems the designer observed, it’s

important to document the playtest to help in the next step in the iterative
game design process: evaluate.
We look more closely at playtesting in Chapter 11, “Playtesting Your Game.”

Step 4: Evaluate
Once a game designer finishes a round of playtesting, they evaluate the
results to assess the game’s design (see Figure 5.6). The art of evaluating the
results of a playtest is taking what playtesters did and said and determining if
and how the feedback necessitates changes to the game’s design. For
example, remember the dinosaur-unicorn jousting game? Let’s say we
observed players having a difficult time understanding how to get the
creatures to pick up their lances. Evaluating this observation involves more
questions—this time along the lines of “why did players have a hard time
grasping how a unicorn jousts?” or “how might we make it easier for players
to understand how to get their brontosaurus to pick up a lance?” Does the
“How might we...?” sound familiar? It should—once you have reached this
last step of the iterative process, you return to the same kinds of questions
we began with in conceptualize. The borders between evaluate and
conceptualize can be a bit fuzzy—hence the circular nature of the process!

Figure 5.6 Evaluate, the fourth step in the iterative cycle.
The other part of evaluate involves taking some time to let the playtest
results sink in while solutions begin to take form. Some designers take
walks, some go running, some take a nap.4 Others talk to other game
designers and friends about the design problems they are working out. Still
other game designers play games, watch movies, or read books and
generally look outside of games for inspiration and influence.

4 We know a game designer who ponders design problems by lying under his desk.

Being a game designer is not about coming up with perfect ideas right off
the bat. The challenge of game design is paying close attention to how other
people engage with game prototypes and then translating that feedback into
design revisions to be tried out in the next prototype. Some of the feedback
from players will be pretty straightforward. Other feedback is more difficult
to diagnose, like, “I feel like this game is too intense.” It takes practice, kind
of like a doctor hearing a patient talk about their symptoms and then from

that, building up enough evidence to make a diagnosis. It involves not only
listening to what the patient says, but observing them and including all of
that into the evaluation. In Chapter 12, “Evaluating Your Game,” we look
more closely at the role of evaluation in the iterative game design process.

A Repeated Process, Not a Single Cycle
Because there is no single motivation for creating games, no two games
follow an identical iterative cycle. There are many paths the process can
take, and they may loop through the iterative steps several times in different
ways for different reasons (see Figure 5.7). The design of some games
resolves quickly after three or four loops through the process. Other games
take dozens of loops through the process. The most important thing to bring
to the iterative game design process is patience. It takes time, but more often
than not, the method brings great results. Iterative game design is a cycle
that steers a game’s design in all sorts of directions the designer may never
have imagined. For game designers who want to create a particular kind of
play experience, the iterative cycle helps them home in on delivering exactly
what they have in mind. For game designers who are more concerned with
expression, the iterative cycle helps them find just the right way to do so. For
game designers who just want people to enjoy themselves, the iterative cycle
helps discover what players enjoy about a game. Ultimately, we iterate
because we are making games, and to build them we need to prototype and
playtest them to fully understand what they can do.

Figure 5.7 A theoretical path for the design of a game.
And, of course, there is life after game design. Indeed, the game design
process is just the beginning, as a whole range of tasks remain—production,
marketing, release, and then maintaining the game. We’ll get into some of
this in Chapter 13, “Moving from Design to Production,” but mostly, we’re
focused on the design process in this book and not production.

Embracing Failure to Succeed
In addition to patience, another key to the iterative game design process is
being open to failure. It is going to happen. In fact, it is really important that
it happens. Early in the design process, failure can make visible the problems
in a game and help the designer find solutions for fixing them. Even the best
game designers fail early in the design process. Reiner Knizia, a boardgame
designer with dozens and dozens of successful games to his name, once said
that all his game designs were perfect until they were playtested.5 That’s the
power—and the pain—of the iterative game design process. A game
designer has intuitions about their game, but until they get all the way
through an iterative loop, they just don’t know what they have. That’s why
game designers want to find the quickest way possible through early loops in
the cycle so they can fail early and often.

5 Overheard at Practice 2012, a conference on game design hosted by New York University’s
Game Center.

Failure is what helps us learn and make our games better. The key is to be
aware that it will happen, and when it does happen, to address it as a team
and identify possible solutions. The best way to leverage failure to improve
the game’s design? By failing fast, with purpose, early in the game design
process. This means doing your best not to get discouraged by it and view it
as a learning experience. Another way to put it is that your first time at
anything will inevitably involve learning from failure. Remember the first
time you played your favorite videogame? When we play videogames,
failure teaches us how the world works in the game. In game design, failure
teaches us how to make better games.
The iterative design process can be used to support a wide range of creative
intentions and play experiences. The next three chapters provide a set of
useful tools for guiding the iterative process. Chapter 6, “Design Values,”
introduces an important tool for capturing the important factors in a game’s
design. Chapter 7, “Game Design Documentation,” outlines the three main
tools for capturing a game’s design—design documents, schematics, and
tracking spreadsheets. Chapter 8, “Collaboration and Teamwork,” rounds out
Part II with a discussion of important considerations around working in
teams.

Summary
Don’t worry about getting it right the first time. Making games is always an
iterative process punctuated by failure and incremental improvement. Once
you have conceptualized your game, you should move as quickly as possible
to prototyping it. There’s no need to worry about coding your game at the
start; prototype it on paper, with your body, any way you can. The key is to
get it as quickly as possible to the playtesting stage. Here you will actually
see your played game for the first time and see it for what it really is. In most
cases, there will be some things about your design that fail. This is where
you evaluate the results of your playtest and return to your initial concept,
including your design values, and begin the process again.

 Conceptualize: The initial idea and the subsequent ideas about the
game explored in prototyping and development.
 Prototype: A form of some aspect of your game, or the entire game in
a prerelease stage that helps you work through the design questions
your game poses.
 Playtest: An answer to the question the prototype poses, and a moment
when you or other people play your prototype and you observe and
document the reactions.
 Evaluate: Reviewing the playtest observations and diagnosing the
results into next steps or new ideas.

Exercise
Find a partner and in 10 minutes, design a game the two of you can play
using your own bodies and anything in the room. You will have to move
quickly, coming up with an idea, prototyping it, playtesting between
yourselves, and then refining it. Make note of each step in the process. At the
end of 10 minutes, write down the rules to your game and give them to two
other players to playtest. How did they interpret the rules? Did they discover
anything new about the game? Did they use any strategies that might break
the game or point in new directions for the design?

Chapter 6. Design Values

Most simply stated, design values are the qualities and characteristics a
game’s designer wants to embody in the game and its play experience.
Design values help designers identify what kind of play experience they
want to create and articulate some of the parts that will help their game
generate that experience.
Designing games can be challenging in large part because of the way games
work. Game designers have many reasons for creating games. Sometimes
they want to share a certain kind of play. Sometimes they have ideas that are
best expressed through a game. Regardless of the reasons, being able to fully
realize the goals you have for a game can be difficult. This is because of the
second-order design problem we discussed in Chapter 1, “Games, Design
and Play;” the designer doesn’t have direct control of how players will play;
instead, they simply define the parameters within which players play.
One of the best tools to guide the creation of play experiences is design
values, a concept we borrow from the scholar Ivar Holm1 and the game
designers Eric Zimmerman and Mary Flanagan. The term value here isn’t
referring to the financial worth of the game. Instead, design values are the
qualities and characteristics you want to embody in a game. This can reflect
your own goals as a creator, but also the experience you want your audience
to have.

1 Holm, Ivar. Ideas and Beliefs in Architecture and Industrial Design: How Attitudes,
Orientations, and Underlying Assumptions Shape the Built Environment. Oslo School of
Architecture and Design, 2006.

The broadest conception of design values is found in Ivar Holm’s work with
architecture and industrial design. Holm identifies five key approaches:
aesthetic, social, environmental, traditional, and gender based.

 Aesthetic: Aesthetic design values focus on the form and experience.
 Social: Social design values focus on social change and the betterment
of society.
 Environmental: Environmental design values address the concerns of
the environment and sustainability. This has more obvious application
to architecture and product design, but is also of importance to games.

 Traditional: Traditional design values use history and region as
inspiration. In the context of architecture, this might apply to restoring
a building to its original state or building in the local, traditional style.
For game design, this might involve working within a genre, or
reviving a historically important game.
 Gender based: Gender-based design values bring feminist conceptions
of gender equality into the design process.

The first game-specific conception of design values comes from Eric
Zimmerman’s “play values,” which he describes as “the abstract principles
that the game design would embody.”2 At times, this sort of design value
relates directly to the “mechanical” nature of the game and its play—the
actions players perform, the objects used, the goal of the game, and so on.
Sometimes design values are adjectives like fast and long and twitchy—
descriptions of what the game will feel like while playing. Other times
design values refer to the “look and feel” of the game. Sometimes design
values are more about the kind of player the designer envisions playing their
game in the first place. Other times, design values are reminders of context
—the location the game is to be played, the technological parameters of the
platform, and so on. These fit within Holm’s aesthetic and traditional design
values.

2 Although Zimmerman uses the term “play values,” our conception of design values is very much
based on this idea. “Play as Research: The Iterative Design Process”
www.ericzimmerman.com/texts/Iterative_Design.html.

In addition to the kind of play experience the designer wants to create,
design values can be derived from different personal, political, or cultural
values as well—in other words, social design values. Social design values
might reflect a desire to express an idea about the human condition, an
experience the designer once had and how it felt, or a political position based
on personal or collective values. A good example of this notion of design
values as an embodiment of political, feminist, and personal values comes
from Mary Flanagan and Helen Nissenbaum’s project and book Values at
Play.3 Flanagan and Nissenbaum developed a framework and toolkit for
identifying political, social, and ethical values in games and exploring how
designers might express their own perspectives. These connect to Holm’s
social and gender design values but can as well extend to the environmental
if we frame it more broadly.

3 Mary Flanagan and Helen Nissenbaum, Values at Play in Digital Games, 2014.

http://www.ericzimmerman.com/texts/Iterative_Design.html

Generating Design Values
Creating design values is a process of determining what is important about
the game—the play experience it provides, who it is for, the meaning it
produces for its players, the constraints within which it must be created, and
so on. We’ve found the best way to get started is with a series of questions
that explore the who, what, why, where, and when of a game. While not
every game begins with all of these, the following are the general questions
to discuss while establishing the design values for a game.

 Experience: What does the player do when playing? As game designer
and educator Tracy Fullerton puts it, what does the player get to do?
And how does this make the player feel physically and emotionally?
 Theme: What is the game about? How does it present this to players?
What concepts, perspectives, or experiences might the player
encounter during play? How are these delivered? Through story?
Systems modeling? Metaphor?
 Point of view: What does the player see, hear, or feel? From what
cultural reference point? How are the game and the information within
it represented? Simple graphics? Stylized geometric shapes? Highly
detailed models?
 Challenge: What kind of challenges does the game present? Mental
challenge? Physical challenge? Or is it more a question of a
challenging perspective, subject or theme?
 Decision-making: How and where do players make decisions? How
are decisions presented?
 Skill, strategy, chance, and uncertainty: What skills does the game ask
of the player? Is the development of strategy important to a fulfilling
play experience? Does chance factor into the game? From what
sources does uncertainty develop?
 Context: Who is the player? Where are they encountering the game?
How did they find out about it? When are they playing it? Why are
they playing it?
 Emotions: What emotions might the game create in players?

This may seem like a lot to think about before designing a game. And it is a
lot. But all these are important factors to consider at the beginning of the

design process for a number of reasons. For one, design values establish the
overarching concept, goals, and “flavor” of a game.
Just as important is the way design values create a shared understanding of
the game. Most games are made collaboratively, and everyone on the team is
likely to have opinions and ideas about what the game is and what its play
experience should be. Design values allow the team members to agree on
what they are making and why they are doing it. They also are an important
check-in when great ideas come up but might not fit the game’s design
values. Continuing to ask, “does this fit our design values?” will help resolve
team conflicts, and, even if it’s a great idea, know whether it should be
included in this game or a future project.

Example: Pong Design Values
Having examples to draw from can be really helpful, particularly when
exploring a new idea or concept—that’s why Part I, “Concepts,” is filled
with examples drawn from games. Now that we’re moving from basic
concepts into the design process, we’re going to use a speculative design
example to illustrate things—Pong (see Figure 6.1). We’re going to pretend
like we’re designing the classic arcade game. To start, the design values are
the following:

 Experience: Pong is a two-player game based on a mashup between
the physical games of tennis and ping pong. It uses a simple scoring
system, allowing players to focus on competing for the best score.
 Theme: Sportsball! Head to head competition!
 Point of view: Pong is presented from a top-down perspective, which
takes the challenge of modeling gravity and hitting the ball over the net
away from gameplay—focusing on the act of hitting the ball back and
forth and trying to get it past your opponent’s paddle. The graphics are
simple and abstract, also keeping the focus on fast and responsive
gameplay.
 Challenge: The game’s challenge is one of speed, eye-hand
coordination, and hitting the ball in ways that your opponent is not
expecting.
 Decision-making: Decisions are made in real time, with a clear view of
the ball’s trajectory and your opponent’s paddle.

 Skill, strategy, chance, and uncertainty: Pong is a game of skill, with
some chance related to the angle of the ball when it is served and some
uncertainty of how your opponent will hit the ball and thus in how you
will counter.
 Context: The game is played in an arcade context, with your opponent
next to you, enabling interaction on the game screen and in the real
world.
 Emotions: Pong is meant to generate the feeling of being completely
focused, grace, intense competition, and excitement.

Figure 6.1 Pong. Photo by Rob Boudon, used under Creative Commons
Attribution 2.0 Generic license.

Case Studies
To help see how design values play out in real-world examples, following
are three real-world case studies: thatgamecompany’s Journey, Captain
Game’s Desert Golfing, and Naomi Clark’s Consentacle.4

4 John writes about additional examples (including the writing of this book) in his essay “Design
Values.” www.heyimjohn.com/design-values.

Case Study 1: thatgamecompany’s Journey
thatgamecompany’s Journey (see Figure 6.2) was an idea Jenova Chen, the
company’s cofounder and creative director, had during his time as a student
in the University of California’s Interactive Media and Games Division MFA
program. He had been playing a lot of Massively Multiplayer Online games
(MMOs) but was increasingly dissatisfied with the inability to really connect
with other players on a human, emotional level. At the time, well before
thatgamecompany formed, the game concept was beyond his abilities to pull
off on his own. Years later, after thatgamecompany had Flow and Flower
under its belt, Jenova thought it might be time to take on the challenges of
Journey.

Figure 6.2 Journey.

In his talk at the 2013 Game Developer’s Conference about designing
Journey, Jenova described the goal of designing a game that makes the
player feel “lonely, small, and with a great sense of awe.”5 This was a design
value: make a game that generates this kind of feeling in the player.

5 For more, see Jenova Chen’s Game Developer’s Conference 2013 talk, “Designing Journey.”
www.gdcvault.com/play/1017700/Designing.

http://www.heyimjohn.com/design-values
http://www.gdcvault.com/play/1017700/Designing

Jenova also wanted the game to involve multiplayer collaboration (in the
case of Journey, two players). This led to a second design value for the game
—being able to share the emotional response with another player and to have
that act of sharing heighten the overall emotional impact.
In addition to these initial interests, the game’s design is informed by where
it is played. Journey’s design values were influenced by the fact that it was
being made for the PlayStation 3. Sony asked thatgamecompany to make a
single-player game, which influenced how the cooperative mechanic was
implemented. It’s seamless, and the experience doesn’t actually rely on other
players being online and playing with you. Players appear and disappear as a
natural occurrence in the world. And, of course, a game created to be
experienced in your living room is going to be more cinematic and
immersive than a game you might play on your phone while waiting for the
bus, so the PlayStation platform informed the visual style and gameplay.
Another design value for Journey relates to the emotional and narrative arc
of the play experience. Jenova was inspired by Joseph Campbell’s work on
the Hero’s Journey, which builds upon the three-act structure common to
theater and film. Jenova and his team began by creating a landscape that
literally and emotionally tracked the arc of a traditional three-act narrative.
This was intended to create an emotional flow from the highs of players
sensing freedom, awe, and connections to the lows of being trapped, scared,
and alone, and finally, closure through resolution.
During the design process, the design team went to visit sand dunes for
inspiration for the game’s environment. While there, they noticed how
enjoyable it was to move through the sand, climbing a tall dune and
experiencing the anticipation of seeing what was at the top. This led to the
idea of sliding in the sand, moving up and down the dunes with grace. This
action fed well into the initial design value of creating a sense of awe as you
move through the environments, and creating experiences that felt realistic—
yet better than reality. Because on a real sand dune, unless you have a sled,
it’s not really possible to slide down them—but in Journey, you surf the sand
as if it were a wave (see Figure 6.3).

Figure 6.3 The player character sliding in the sand of Journey.

To achieve all these goals, Jenova and the thatgamecompany team had to
work through a number of problems around player expectations and the
conventions of multiplayer gameplay. In early prototypes, the game included
puzzles involving pushing boulders together, or players pulling one another
over obstacles.6 The goal was to create a multiplayer environment that
encouraged collaboration. However, while playtesting, the team observed
players pushing one another and fighting over resources. They soon realized
that the kinds of actions allowed in the game and the feedback players were
getting were all working against the collaborative spirit they were hoping to
encourage. So they devised a solution that led to players being able to
complete the journey alone as well as together, have equal access to
resources, and have little effect on the other player’s ability to enjoy the
game. And when players tended to use the in-game chat to bully or otherwise
act in unsociable ways, the team had to make some difficult decisions about
how to support player communication without allowing players to treat one
another badly. This meant removing “chat” and replacing it with a single,
signature tone. All of these decisions were informed by the design values of
meaningful connection and a sense of awe.

6 Jenova Chen and Robin Hunicke, IndieCade 2010: “Discovering Multiplayer Dynamics in
Journey Parts 1–4.” https://www.youtube.com/watch?v=0BLoTk6cmWk.

https://www.youtube.com/watch?v=0BLoTk6cmWk

Having the design values for the game allowed the team to remain focused
on its goals and understand what they were aiming for as they developed
prototypes. It took a good number of cycles through the iterative process to
get the game to meet its design values and the goals initially set by Jenova.
This was in large part because he wanted to do things that differed from
most other games—there wasn’t a set formula or a precedent to work from.
And so he and the thatgamecompany team had to experiment and try things
out to craft, refine, and clarify the Journey player experience, and as they
went, revisit their design values to make sure they were staying true to the
team’s goals. In the end, all of the hard work paid off. Journey went on to
win many awards, including The Game Developer’s Choice award for best
game of the year.

Case Study 2: Captain Game’s Desert Golfing
Desert Golfing (see Figure 6.4) is a deceptively simple game: using the
tried-and-true Angry Birds-style “tap, pull, aim, and release” action, players
hit a ball through a desert golf course of 3,000 (or more) holes. The game is
deeply minimal in all ways: a single action for achieving a single goal (get
the ball in the hole), yielding a single score (the total number of strokes)
over an enormous number of holes, all with spare, flat color graphics and
minimalist sound effects.

Figure 6.4 Captain Game’s Desert Golfing.

Desert Golfing began with a simple idea: make an “indie Angry Birds.” For
Justin Smith, the game’s designer, this was shorthand for keeping all the
pleasurable aspects of the “pinball stopper” action of Angry Birds, while
removing a lot of the extraneous details that he felt detracted from the
potential of this action. This was the first and primary design value for the
game. It meant keeping the gameplay minimal, which kept a clear focus on
the core action.
Justin describes his design approach as “asynchronous”—he collects ideas in
a notebook (jotting down things like “indie Angry Birds”) and then when
ready to work on a game, he flips through his notes to find ideas that
connect. Justin always had an interest in sports games, and golf games in
particular, which happened to lend itself well to the “pinball stopper” action.
The interest in golf led to a thought experiment in which Justin imagined
putting a golf game on top of thatgamecompany’s Journey. Though he didn’t
do that, it did inspire the color palette and environment of the game. This
provided the next design value: the characteristics of the game’s world.
Justin also thought about the minimum play experience and wanted players
to be able to have a satisfying play session that was as small as a single
stroke of the ball. This created the third design value: a deeply satisfying and
discrete sense of pleasure from each action. This put a lot of importance on

the “pinball stopper” action—the way it felt and how much nuance players
could get from a simple gesture. Justin had to tinker with the responsiveness
of the pull-and-release gesture, how feedback was visualized, and how the
sound effects supported players’ understanding of what they did.
Knowing he wanted a golf game, Justin thought about how he might
generate the holes. He was much more interested and attuned to procedurally
generating the holes with code than manually designing them. This led to the
idea of creating a seemingly endless golf course in a desert and a fourth
design value: a sense of infiniteness to the game. To achieve this, Justin had
to develop a set of more concrete rules to procedurally generate the first
3,000 holes of the game. This came through a series of trial-and-error
experiments as he moved through iterative cycles of generating levels,
evaluating the results, and making changes to the rules controlling the golf
hole generation.
The final design value related to how players shared their Desert Golfing
play experiences. He wanted to allow players to organically find things they
wanted to share and discover about the game. This led to a couple of things.
One was the gradual shifting color palette. It created a sense of discovery
that players wanted to share with one another. Similarly was a player’s
stroke total. Instead of creating leaderboards that would drive competition,
Justin left it to players to find ways to share their scores. This led players to
talk about this in person and through social media.
Desert Golfing is a great example of how design values can develop over
time. Keeping a notebook for ideas and then returning to those ideas can
begin the process of forming design values for a game, even from a simple
notion, like an action or a setting inspired from another game. Justin Smith’s
process of establishing design values was also influenced by the things he
was interested in trying, such as the procedural generation of each level.
Ultimately, design values are highly personal, based on choices about what
you want the player experience to be and what you are interested in
exploring as a designer.

Case Study 3: Naomi Clark’s Consentacle
Naomi Clark’s cardgame Consentacle (see Figure 6.5) is an example of a
game created in response to the designer’s experiences with other media and
playing other games. Consentacle grew out of a dissatisfaction with a
particular strain of animé—Hentai, a genre notable for sexual acts that are
often nonconsensual and violently portrayed, between tentacled monsters
and young women. The traditions of the genre had the monsters in the
position of power. Naomi wondered what might happen if she created a
game in which both characters had equal power. The idea of a game where
characters have equal power and engage in consensual activities formed the
core design value for Consentacle, one that manifests in how the game is
played, but also its politics.

Figure 6.5 Naomi Clark’s Consentacle.

There was one other thing from Hentai that Naomi drew inspiration from:
the idea of developing alternative genders—the tentacled monster’s gender
was ambiguous in Hentai animé. Naomi thought this worked as a perfect
metaphor for queering gender, though at first she wasn’t exactly sure what
form it would take. Together, these provided the theme of Consentacle,
which is a strong guiding form of design value: finding ways to embed or
express a theme through a game’s play.
With these ideas tucked away for a future project, Naomi began playing
Android: Netrunner. Thanks to fellow game designer Mattie Brice, Naomi
noticed that if you approached Android: Netrunner as a role-playing game,

there was an intimacy to the interactions between the Corporation and the
Runner. The Corporation was always vulnerable to the Runners, who in turn
were continuously probing to gain information and points. It reminded
Naomi of the dynamics of her game idea, Consentacle, so she decided to use
this as a point of reference. This led to the second design value: exploring
the inherent intimacy of collectible card game economic systems as a system
for emotional engagement.
Naomi realized that a good deal of the intimacy came from the interactions
around imperfect information spaces—the Corporation always had hidden
information that the Runner had to think about and try to learn. Naomi began
looking around for other cardgames and boardgames that used hidden
information in similarly intimate ways. She began playing Antoine Bauza’s
Hanabi (see Figure 6.6), a cardgame in which players can see one another’s
cards, but not their own. In Hanabi, players must collaborate to help one
another make the right decisions. This led Naomi to her next design value:
collaborative gameplay as an exploration of consensual decision-making.

Figure 6.6 Antoine Bauza’s Hanabi.

With these components in place, Naomi quickly conceived of the basic play
experience of Consentacle. Players—one a human, the other a tentacled alien
—work together to build trust, which leads to satisfaction. This is done by
simultaneously playing a card that, when combined, describes actions
players can make around the collection of trust tokens and satisfaction
tokens. In the beginner’s version of the game, the players can discuss which
cards they will play, but in the advanced version, they are not allowed to talk
and must develop alternate means of communicating with one another.
With constraint being a big part of a game designer’s toolkit, Naomi began
to think about ways she could constrain the player’s ability to collaborate in
a fun way. This led Naomi to think about the ways players could work
together without regular communication. She came up with the idea of using
what she calls “collaborative yomi”—players trying to guess one another’s
actions in order to help one another, instead of the normal understanding of
yomi as trying to best one another in a competition. This was the third
design value for the game.
Because the game was seeking to encourage collaboration, Naomi decided
fairly early on that she didn’t want the game to have an absolute win/lose
condition. This was the fourth design value for the game. With this in mind,
Naomi began thinking about ways to give players feedback on how they did
without declaring a winner or loser (which would push against the
collaborative nature of the game). Naomi took inspiration from the quizzes
in Cosmopolitan magazine that rate along a scale. So the game used a scale
to evaluate the collaborative score as well as the spread of points earned by
the two players.
Consentacle’s unique gameplay is crafted around a set of design values
reflecting real-world issues around consent. As she developed Consentacle,
Naomi looked to games and other forms of media to provide insights into the
design process, leading to interesting and ultimately unique solutions.
Throughout the process, the design values in the game led Naomi’s research.
This is important—it is easy to get lost looking at other games and media for
influence—but if you have a strong set of design values, your search will
have direction and purpose.

Summary
As you can see from our Pong thought experiment and the three case studies,
design values are helpful in guiding the design process. They are guideposts
in the journey through a game’s design. This is important because as you
create your game and test it with others, you need a goal to work toward.
Design values can also answer many of the questions that arise in the
process of making a game. They function as tools for calibrating the team’s
understanding of the game they hope to create, and they keep everyone
working toward a unified play experience.
Here are the basic questions of design values:

 Experience: What does the player do when playing? As game designer
and educator Tracy Fullerton puts it, what does the player get to do?
And how does this make them feel physically and emotionally?
 Theme: What is the game about? How does it present this to players?
What concepts, perspectives, or experiences might the player
encounter during play? How are these delivered? Through story?
Systems modeling? Metaphor?
 Point of view: What does the player see, hear, or feel? From what
cultural reference point? How is the game and the information within it
represented? Simple graphics? Stylized geometric shapes? Highly
detailed models?
 Challenge: What kind of challenges does the game present? Mental
challenge? Physical challenge? Challenges of perspective, subject, or
theme?
 Decision-making: How and where do players make decisions? How
are decisions presented? Is the information space perfect or imperfect?
 Skill, strategy, chance, and uncertainty: What skills does the game ask
of the player? Is the development of strategy important to a fulfilling
play experience? Does chance factor into the game? From what
sources does uncertainty develop?
 Context: Who is the player? Where are they encountering the game?
How did they find out about it? When are they playing it? Why are
they playing it?
 Emotions: What emotions might the game create in players?

Exercises
1. Take a game and “reverse engineer” its design values. Pay close

attention to how the game makes you feel and how you imagine the
designer might have captured those feelings in design values. Follow
the list of design values from this chapter as a guide.

2. Take that same game and change three of the design values. Then
modify it (on paper, or by changing the game’s rules) based on the new
design values. How do these changes affect the whole? How different
is the play experience?

Chapter 7. Game Design Documentation

To keep the iterative design process from feeling like an ever-shifting state
of chaos, we use three kinds of documentation: design documents,
schematics, and tracking spreadsheets. Design documents record the specific
design decisions made about the game, including a game’s design values.
Schematics illustrate how the design is manifest onscreen to make the
abstract ideas of a game partially tangible before being implemented in a
prototype. And the tracking spreadsheet captures big-picture and moment-to-
moment tasks necessary to design, prototype, and playtest a game.
If all that happened during the iterative game design process was literally
conceptualizing, prototyping, playtesting, and evaluating, the process would
more often than not lead to confusion and despair. Team members might end
up with different understandings of the game, duplicate work might get
done, or even worse, work might not get done at all. To help keep everyone
on the same page, we use three interrelated documentation methods: design
documents, schematics, and tracking spreadsheets. Each plays a different
role in the iterative game design process. The design document functions as
the overview for a game’s design and includes guiding elements such as
design values (see Chapter 6, “Design Values”). Schematics are like
blueprints, showing the basics of how a game looks to help explain what it
will be like to play and what needs to be built. And the tracking spreadsheet
is like the to-do list that guides the team through the tasks of producing
prototypes and running playtests. The rest of this chapter digs into the details
of each of these three important documentation methods and introduces how
they are used.

The Game Design Document
The game design document is a useful tool to help game designers turn
ideas, inspirations, and design values into more structured designs. Design
documents capture decisions and turn them into concrete plans for a game’s
design that serve as a reference for everyone on the team. Without a game
design document, moving through the iterative design process can be
confusing and hard to keep track of. The team, or even a gamemaker
working alone, will be left to rely on memory and the not fully explored
ideas that seemed so excellent in the spur of the moment.

Many people assume a game design document is a 500-page tome exploring
every last detail of a game. If an enormous team is making a massive game,
that might be the case, but for many indie games, the document likely won’t
be much more than 10–20 pages. Finding the right level of detail for
capturing the design of a game can take time to master. Particularly when
working with a team, more detail is likely better at first, and as the team
begins to understand the game and develops a group working style, the level
of detail needed will become clear.
Game design documents share properties with film scripts (see Figure 7.1).
For many filmmakers, the script is the “playbook” from which a film is
produced. It includes descriptions of the scenes, dialog, and situation
prompts, along with information on character emotions and motivations.
Without the script, the film crew would be left to sort out what to shoot, and
the actors would be left to guess at what they were supposed to do in a given
scene. Game design documents serve a similar role for guiding a game’s
design and the aspects of it that are created through prototypes. Without
some form of documentation, teams would likely get details wrong and
cause confusion, frustration, and lost time.

Figure 7.1 Sample film script page from Nina Chernik’s film My Moon.

Game design documents are also like software requirement specifications,
something briefly alluded to in the introduction to the iterative process.
Software requirement specifications (see Figure 7.2) outline how a piece of
software will function, including the goal of its use. Unlike film scripts,
which document a linear film, software specifications cannot, in most cases,
outline exactly how the software will be used, as users will do different
things with it. Software requirement documents therefore tend to have both a
systems-oriented approach whereby the “moving parts” of the software are
identified and their interactions explained and a set of use cases that
illustrate how users might put the software into motion. Software specs also

tend to be very technical in nature, with details on how the software will be
constructed. They can be part of game design documents as well, but they
often are handled in separate documents more closely oriented to production.

Figure 7.2 Sample software requirements page.
Think of the design document as a living document. Each time the team
moves through the iterative cycle, it is important to return to the design
document to keep it up to date and make sure it captures the current
understanding of the game. This will likely lead to adding new sections and
heavily revising or even throwing out other portions of the document. The
most important thing, though, is keeping the design document up to date.
This can seem like a time-consuming process, and sometimes it is, but it is
still very important, particularly for more complex games or games with
bigger teams.
There isn’t a “one size fits all” solution to game design documents, as games
have different focuses and needs. Sometimes the game may need something
more like a film script (particularly story-driven and dialog-heavy games),

while in other cases something closer to the systems-driven approach of
software requirement specifications is more helpful. In most cases,
particularly early in the process, there are some basic elements the team will
want to include in its game design document, such as the following:

 Working title: Even if you aren’t sure of the title yet, you are probably
calling it by a name. Later on, the team can brainstorm titles and
choose one based on what will communicate the idea of the game most
effectively. And, of course, if the intention is to release the game, it
must be a name that is unique and findable via online search, and if it
is a commercial title, it should be available to trademark.
 Description of play experience: This is a paragraph that describes the
basic elements and premise in language that would make sense to
someone unfamiliar with the game. How is the game played, where,
what is the game about, and how does the play experience feel? This is
different from a use case, though that approach can be helpful earlier
on before playtesting with people outside the team has begun.
 Goal: This should be a brief description of the game’s goal(s). What
are players trying to do through their play? This may be a zero-sum,
winner-take-all outcome, it might be a collaborative outcome, or it
may be a purely experiential outcome. Whatever it is, capturing it is an
important part of steering a game’s design.
 Basic elements: This is an overview of the important elements in the
game. Think of it as a description of the system objects, or of the
“moving parts” in the game. It may make sense to create a systems
map to help visualize the relationship between the elements.

 How many players are there?
 What are the player goals in the game?
 What are the main actions in the game—that is, what is the player
doing to meet those goals?
 What are the objects used?
 What is the playspace?
 What are the rules governing all of the above?

 Annotated list of design values: The annotated list of design values is
where all of your design values are captured and shared. (See Chapter
6 for the full explanation of each of these.)

 Experience: What does the player get to do?
 Theme: What is the game about? How does the game present
concepts?
 Point of view: What does the player see, hear, or feel? From what
cultural reference point? How are the game and the information
within it represented?
 Challenge: How does the game challenge the player?
 Decision-making: How do players make decisions?
 Skill, strategy, chance, and uncertainty: How are these elements
used and balanced?
 Context: Who is playing, where, and when? On what platform?
 Emotions: How does the game make the player feel?

 Interface and controls: These are diagrams of what players see
onscreen (if there is a screen), how information is organized and
presented, and how the player interacts with the game. This will likely
include schematics covered later in this chapter.
 Game flow: This is a flowchart supported by a series of schematics
that show how the players move through the play experience.
 Level design: Should the game have levels, this information should be
captured as well. For each, an overview description along with an
annotated level map should be created.
 Art direction: The “look, feel, and sound” of the game. At first, this
may be a moodboard with annotated photo and sound references.
Later, it will include concept art and sample audio. Eventually, it will
reflect the final visual and audio approach to the game.
 Technical overview: For some more ambitious games, a technical
overview is a helpful tool to think through how the game will be
produced. This likely won’t start to take shape until a little ways into
the design process.

Example: Pong Design Document
Continuing with our speculative Pong example, here’s a fictional early stage
game design document for the classic arcade game.

 Title: Pong

 Gameplay description: Pong is a two-player twitch-style local-
multiplayer ballgame with a dose of strategic decision-making played
in an arcade cabinet. The play experience transposes tennis and ping
pong to a two-dimensional videogame. Players are positioned on
opposite sides of a court from which they serve and volley.
Play begins with one side serving the ball to the receiving side. As in
tennis, volleyball, racquetball, and so on, a volley continues as long as
each side hits the ball back to the other player, without missing it.
Players can only move up and down (not left and right). The ball may
bounce off the top or the bottom of the screen as part of legal play, but
if a player misses the ball, it will exit on the player’s side and the other
player will receive a point.
 Goal: The goal of the game is for a player to reach a score of 11 before
the other player.
 Design values:

 Experience: Pong is a two-player game based on a mashup between
the physical games of tennis and ping pong. It uses a simple scoring
system, allowing players to focus on competing for the best score.
 Theme: Sportsball! Head-to-head competition!
 Point of view: Pong is presented from a top-down perspective,
which takes the challenge of modeling gravity and hitting the ball
over the net away from gameplay—focusing on the act of hitting the
ball back and forth and trying to get it past your opponent’s paddle.
The graphics are simple and abstract, also keeping the focus on fast
and responsive gameplay.
 Challenge: The game’s challenge is one of speed, eye-hand
coordination, and hitting the ball in ways that your opponent is not
expecting.
 Decision-making: Decisions are made in real time, with a clear view
of the ball’s trajectory and your opponent’s paddle.
 Skill, strategy, chance, and uncertainty: Pong is a game of skill,
with some chance related to the angle of the ball when it is served
and some uncertainty of how your opponent will hit the ball.
 Context: The game is played in an arcade context, with your
opponent next to you, enabling interaction on the game screen and

in the real world.
 Emotions: Pong is meant to generate the feeling of being completely
focused, grace, intense competition, and excitement.

 Basic elements:
 Players: Two, represented by a rectangular paddle that moves
vertically.
 Paddles: Divided into eight segments that determine the angle at
which the ball bounces.
 Ball: A ball that reacts by bouncing in the opposite direction when
hit, depending on what part of the paddle hits it (if it is hit by a
paddle) and the angle at which it is moving. The ball speeds up with
every successful hit.
 Walls: Along the top and bottom of the screen, the ball may bounce
off of them, and they keep the paddle from moving offscreen.
 Scoreboard: A score on each side, goes up to 11. A sample
scoreboard is 09 | 11.
 Scoring: Points are scored as single points. Games are played to 11
and can be won by a single point (such as 11 - 10). Points are scored
each time a player fails to return the opponent’s volley.

 Interface and controls:
 Controls: Each player has an analog joystick that controls the
movement of the paddle on the player’s side of the net. The analog
joystick allows the player to move vertically along the baseline.
 The screen: The court is seen from a top view. Players are
positioned on opposing sides of the screen (left and right). There is a
scoreboard along the top of the screen and a dotted line dividing
each side.

 Game flow: The Pong game flow is illustrated in Figure 7.3.

Figure 7.3 Pong game flow chart.
 Art direction: Simplicity, white on black.
 Technical overview: Transistor-to-transistor logic. (It’s 1972!)

Schematics
Closely related to the game design document are schematics. Where the
game design document focuses on detailed descriptions of the game’s
design, schematics use images to visualize the design. More often than not,
these will work hand-in-hand with the game design document, and in some
cases, they will be folded into or even replace it. The goal of schematics is to
function as wireframes, storyboard, and blueprints of a game’s design,
showing how it will work, even if in abstract, cursory forms.
Game design schematics are like the wireframes associated with user-
centered design of websites, apps and software (see Figure 7.4). Wireframes
use simple geometric shapes and “greek” text to show what elements should
be onscreen at any time. As the design becomes better understood,
wireframes also represent how the user might move through the experience
of using the website, app, or software. Schematics function like this for
games. Early on, they capture what should be onscreen at any given
moment. Over time, they begin to reflect the composition of core interface
elements in the game. Eventually, they provide a guide for what happens
during gameplay.

Figure 7.4 Sample website wireframe.

Let’s take as an example what a wireframe for the classic arcade game Pong
might look like (see Figure 7.5). The core elements of the game are
represented—the two paddles, the net, the ball, the court, and the players’
scores. This information is important in helping everyone understand the
objects and playspace of the game. What the single wireframe doesn’t
represent, though, is how all of them interact. But when presented as a
sequence, ideas about what happens when the game is in play can be
expressed.

Figure 7.5 Fictional Pong wireframe.

This raises an important question about wireframing a game—since the
game state is constantly shifting and changing based on player experience,
how does a game designer determine what should be represented? There
isn’t a one-size-fits-all answer, but a general rule of thumb is that key
changes in the basic elements should be reflected. So, in our Pong example,
what happens when a point is won, showing how the next point begins, or
what happens when the game ends should be represented in wireframes.
Schematics are also like the storyboards used in filmmaking. Filmmakers
use storyboards (see Figure 7.6) as an important tool for previsualizing the
way the camera will capture a scene. They suggest placement within a space,
the angle from which it will film, and should the camera move during the
scene, an indication of the direction and speed. For many filmmakers,
storyboards are based on the film’s script. The storyboards visualize the
setting and action described in the script in a way that creates shared
understanding among the film crew. For game design, storyboards serve a

similar function—making sure everyone understands how the game will be
represented onscreen (for those games that use a screen, that is). This is
particularly useful for 3D games and games with more complex uses of the
screen space.

Figure 7.6 Sample film storyboard from Nina Chernik’s film My Moon.
A step past storyboards are animatics, a technique borrowed from animation.
Animatics are simple sequences of storyboards that are used to indicate
motion, pacing, and other important kinetic elements.
Schematics can also be like architectural blueprints (see Figure 7.7).
Blueprints serve as the hyper-detailed plans from which a building is
constructed. Beyond the details of the dimensions and materials, blueprints
include information on how water and electric infrastructure are integrated.
Blueprints are used to help architects and engineers communicate how a
building needs to be built with the construction crews that do the actual
construction. This sort of detailed drawing is also useful for game design,
particularly once things get further along in the design process. Schematics
can indicate things like the basic interactions of objects, or the pixel-specific

dimensions of interface elements and other details important for the team to
understand.

Figure 7.7 An architectural blueprint by Stone Librande.

In our fictional Pong schematics (see Figure 7.8), a production blueprint
might be used to map out the dimensions of the game; the size of the
paddles, ball, and net; and even typographic specifications. Because the ball
bounces off the paddle in different angles depending on where on the paddle
it lands, a schematic for Pong might also help communicate what angles
each section of the paddles correspond to.

Figure 7.8 Fictional production blueprint for Pong.

Integrating Schematics into the Game Design Document
As detailed as they might be, the schematics produced for a game aren’t
always going to be able to stand alone to capture the full plan. More often
than not, they need to be integrated into the design document to illustrate key
points, but also to provide greater detail around what is captured in the
schematics. Together, the two work well to capture the thinking around a
game’s design.
In other cases, a set of annotated schematics (see Figure 7.9) can replace the
game design document. With our Pong example, the game is simple enough
that this would probably work just fine. The basic information necessary can
be added as notes supplementing the schematics. The team would likely
want to still create design values, and the art direction process would still
need to unfold, but these can happen outside the game design document
structure.

Figure 7.9 Annotated Pong schematics.

The Tracking Spreadsheet
While the iterative game design process provides an overarching
methodology for designing games, there is still a lot left to sort out around
both big-picture milestones and day-to-day tasks that take the team from
concept to prototype to playtest to evaluation and back again. In our own
game design practice, tracking spreadsheets are particularly helpful. Often,
our team is spread out around New York (where we live), with one of our
frequent collaborators living in Seattle. Tracking spreadsheets have the
additional value of being accessible to everyone, so long as we keep them in
a cloud-based repository.
To track our projects through this modified process, we use a spreadsheet
made up of six sheets: overview, for discussion, task list, ongoing
responsibilities, asset list, and completed tasks. This document structures our
process and has the added benefit of providing an agenda for our meetings,
keeping things running smoothly and on track.

Overview
The “overview” sheet captures the overall schedule for the game’s design.
This sheet plots out an ideal trajectory that the team can refer to and use as a
guide throughout the game design process. We tend to organize the
“overview” sheet in terms of prototypes, planning three to five prototypes
ahead. As the iterative cycle unfolds, things change, and so too will the
overview schedule. For each item in the list, we include a title, a summary,
and then a group of things to do within that prototype phase. Noel Llopis
suggests that the first step is being able to understand the scale of a given
task (see Figure 7.10).1 He breaks things down into four categories: long-
range, mid-range, short-range, and immediate:

1 Noel Llopis, “Indie Project Management For One: Tools” http://gamesfromwithin.com/indie-
project-management-for-one-tools.

 Long-range tasks: These are the “guideposts” of the game’s design,
like getting to the first core game prototype or a feature-complete state.
To come up with this list, take the design elements from the design
document and turn them into discrete tasks.
 Mid-range tasks: These are the more significant milestones in the
game’s design and include things like a prototype milestone or
completing the game’s art direction for review. Long-range tasks are
often made up of sets of mid-range tasks.
 Short-range tasks: These are the more substantial tasks that will
advance the game’s design. Things like a new set of style frames for
the game’s look or implementing a new mechanic for playtesting fit
into this category. These tasks should be measured in days, not take
more than a week or two to complete, and should be planned as part of
achieving mid-range tasks.
 Immediate tasks: These are the quick tasks that can be done in shorter
measures of time, like fixing a known bug or capturing a new design
idea in the design document. This is the most plentiful type of task in
any game design project. These in turn should be in service of reaching
short-range tasks.

http://gamesfromwithin.com/indie-project-management-for-one-tools
http://gamesfromwithin.com/indie-project-management-for-one-tools

Figure 7.10 Long-range task list.
Organizing your “overview” sheet around long-range tasks, which break
down into a set of mid-range tasks, which are made up of a series of short-
range tasks, is really helpful. Assigning timeframes to the long-range and
mid-range tasks helps the team have shared goals for getting things done.

For Discussion
This sheet lists all the current things the group needs to review and make
decisions about (see Figure 7.11). Sometimes, the items on this list are new
ideas or design plans that need to be worked through. Often, “blockers” are
on this list: things that need to be addressed for team members to complete
tasks. Once an item has been discussed, it moves to one of the other sheets.
The “for discussion” sheet has three columns: topic, who wants to discuss it,
and notes.

Figure 7.11 For discussion list.

Task List
The “task list” sheet is where all current tasks are tracked (see Figure 7.12).
These generally relate to the current phase in the iterative cycle and often
form a prototype and playtest plan. We divide our task lists into two
sections: short term and immediate. The immediate tasks should be grouped
under short-term tasks to help the team understand the bite-size chunks of
work to be accomplished. For both, there are four columns: tasks, person,
time estimate, and notes. As tasks are completed, they are struck through.
And at the end of the phase, we move them to the “completed tasks” sheet.

Figure 7.12 Task list.

Ongoing Responsibilities
This sheet tracks which team member is responsible for what as part of the
game (see Figure 7.13). As roles change, so too does this sheet. It has three
columns: responsibilities, who, and notes.

Figure 7.13 Ongoing responsibilities list.

Asset List
The asset list sheet (see Figure 7.14) keeps track of all the pieces the team
needs to make. This includes models, sprites, sound files, in-game text, and
any other pieces necessary for creating more complete prototypes. Given the
specificity of this sheet’s content, it doesn’t come into play until later in the
process, once a game’s design is stable enough for the team to have a solid
idea of the pieces needed to produce prototypes. The asset list is organized
by the prototype the asset is needed for (from playable to complete), and the
stage the asset should be in for that prototype (for visuals, from wireframe to
art to art+animation, and for sound, from placeholder to final). If there’s a
schematic for the game, the page number is listed so the artist can see how
the art is used.

Figure 7.14 Asset list.

Completed Tasks
The last sheet, “completed tasks” (see Figure 7.15), records all the work
done in the various phases. It is important, as it helps you reflect on what
you’ve already done and questions you’ve asked as a team. Generally, it
helps you avoid revisiting work the team has already done. If you are
striking through tasks on the overview sheet or task list, they can finally be
moved here to keep everything clean and organized.

Figure 7.15 Completed tasks list.

Summary
While this chapter is called “Game Design Documentation,” it’s really about
how to stay on track through the iterative design process. While
documenting the process involves, well, making documents, it also is a way
to ensure that everyone on the team is on the same page. If you are working
alone, it ensures that you make progress and stay true to your design values.
Documenting gives you clarity about what you are making (through the
design document), how it will take form (with schematics), and what to do
next (in the task list).

 Design Document: Contains all of the concepts, values, and a
description of your game.
 Schematics: A map of the actual game screens, wireframes screens, or
a storyboard of the game experience that helps you make tangible the
elements you will need to consider for your prototyping process. These
are often integrated into the design document.
 Task List: A list of long-range, mid-range, short-range and immediate
tasks, issues for discussion, ongoing responsibilities, assets, and
completed tasks for your game design process.

Exercise
1. Create a design document for a project you are working on or an

imaginary project you would like to work on.

2. Develop a set of schematics for the same game.
3. Plan a schedule for the game, and produce a task list spreadsheet.

Chapter 8. Collaboration and Teamwork

This chapter explores one of the more important aspects of iterative game
design: collaboration. Topics such as setting up team rules, running
meetings, and establishing roles are discussed. And perhaps most important,
techniques for resolving differences and conflicts among team members are
introduced.
Before diving further into the game design process, let’s step back and think
about the collaborative nature of making games. Both of us have been part
of many collaborative projects throughout our careers, with teams ranging
from 2 to 20 people. We’ve also overseen hundreds of student teams as they
worked on collaborative projects. Through all of this, we’ve experienced
many, if not all, the pitfalls and challenges of collaboration. That’s what this
chapter is about: the things you need to pay attention to when working in a
group. It’s about knowing who is doing what, how you’ll work together,
how to run meetings, how to identify and work through differences,
learning to embrace failure as part of the iterative process, and the creation
of team agreements to help structure how it all unfolds.
More often than not, games are made by teams. This isn’t always the case,
of course, particularly around smaller, or more personal games like anna
anthropy’s Queers in Love at the End of the World or Captain Game’s
Desert Golfing. Still, in the vast majority of cases, games are collaborative
productions. So developing skills to work well with others is just as
important as honing game design, programming, sound design, and art
direction skills.

Roles and Responsibilities
One of the most important areas to consider is who is doing what.
Traditional roles in game development revolve around game design,
programming, interface design, visual art, sound design, project
management, and testing. On larger teams, these break down even further—
within game design, there might be a lead game designer, level designer,
vehicle designer, and so on. But on small teams, the roles and
responsibilities tend to mix: a designer who also programs; an artist who
handles project management; a sound designer who works on level design.
Even with overlapping roles, it is important to know who is doing what to
avoid potential confusion and frustration.
Here is a simple explanation of the roles and responsibilities to take into
account as you and your team design your game. Depending on the game,
not all roles may be needed, but these are the basics.

 Game design: Most simply stated, game design is the determination
of the game’s goals, the play experience, and the objects used and
actions performed by players to achieve those goals.
 Programming: The programmers implement the code that allows the
game to be played. This includes the gameplay but also other things
like communication with servers, hooking into controller protocols,
and other processes that make the gameplay happen.
 Art direction: The artist creates what the player sees while playing the
game. This can include the character design, animation, world design,
splash and credit screens, and interface elements.
 Narrative design: The creation of the game’s storyworld, should it
have one. This can include a range of activities like writing backstory,
developing characters, writing dialogue, creating scenarios to connect
levels or scenes, and so on.
 Sound design: The musical score, environmental or ambient sounds,
and event sounds that play during the game. On smaller teams, this
role will include both the early-stage concepting and style
development and the later-stage production of implementing sound.
 Art implementation: Separate from the creation of the visual and aural
style is the implementation of these. This breaks down into a wide

range of production tasks—animation, modeling, rigging, and sprite
creation, for example.
 Testing: The process of planning, organizing, running, and
documenting playtests of the game’s prototypes.
 Project management: The day-to-day management of the schedule
and budget, ongoing and upcoming tasks in the iterative design
process.
 Marketing/public relations: Even on student and indie projects, it’s
important to keep in mind that talking about your game and helping it
find an audience is a part of the process.

While these are the primary tasks of game development, they do not have to
be isolated roles. Many developers, particularly on the small team projects
this book focuses on, find it better to have shared responsibility for tasks.
Local No. 12, our company with Eric Zimmerman, shares game design and
project management tasks, and everyone provides feedback on all aspects of
the game. From there, we have specific roles. Colleen leads the narrative,
content, and marketing aspects of our projects, John the visual design, and
Eric the game design documentation and playtesting process. On some
projects, Colleen codes, while on others we bring in collaborators to handle
this part of our games. On another project outside Local No. 12, Colleen
and John share game design, while another collaborator develops custom
controllers, and two others code. John does art direction, too, while Colleen
does interaction design.

Alignment Versus Autonomy
On most teams, there isn’t a “boss,” and no single team member has final
say over any aspect of the game. In some fields, project manager or
producer roles are thought of as “the boss,” while in many creative fields,
the creative lead is considered to be in charge. But in small team game
projects, that isn’t always the case. Many small game teams prefer to strike
a balance between autonomy in roles and alignment of team vision. For
example, the art director will likely create style frames (a single image of
what the game will look like) or screen mockups, but they won’t necessarily
have final say. In fact, given the way game design, art direction, coding,
sound design, narrative design, and all other facets of making games
overlap, it is important that the team gives feedback on important decisions
in the process.
The more autonomy someone has in their role (or roles) on the team, the
more likely they are to feel empowered and thus engaged and committed to
the game project. The more aligned everyone is, the more in sync the team
will be, but the less autonomy any one person has. This is the fundamental
balance teams must find to keep the process healthy and productive for
everyone. Henrik Kniberg talks about balancing these at the streaming
music service Spotify.1 At Spotify, they think about this as a pair of
intersecting continua where they want to have clear goals for each project
that everyone agrees on. Team members are then given autonomy to find
ways to achieve the goals.

1 Spotify Engineering Culture (Part 1)” by Henrik Kniberg.
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/.

We have found consensus-based decision-making2 to be the best approach
for balancing autonomy and alignment. Individuals have areas in which
they focus their energies, but important decisions are discussed and agreed
upon by the entire team. An important distinction to draw here is between
agreement and consent. While everyone may be okay with a decision, that
doesn’t necessarily mean everyone is in agreement. Being able to tell the
difference is important to avoid latent tension in the group. It takes time and
energy, but establishing consensus in which everyone buys into a decision is
well worth the effort. This may seem like it would take an inordinate
amount of time, but that is not necessarily the case.

2 A great resource for how to make decisions through consensus is found here:
www.consensusdecisionmaking.org/.

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
http://www.consensusdecisionmaking.org/

The more clearly a team can establish its goals for the game, the more
members can trust one another to autonomously work toward their success.
Design values (discussed in Chapter 6, “Design Values”) play a big role in
this. If everyone knows what the team values about the game’s play
experience, then team members can feel open to explore the best solutions,
processes, and implementations to meet the design values. This also
requires frequent check-ins to see how everyone is proceeding on their
portion and how the decisions team members are making impact the work
of others.

Time and Resources
In the same way that many of these roles will be split among team members
in different ways, the amount of time and energy required by each will vary
over the design process. For example, the art direction and programming
may not really begin to happen until the concept is gelled on some projects,
while on others, things begin with art or code. It is also likely that roles will
shift over the course of the project. At first, the project management may be
handled by the art team, but later, once the game design is understood,
project management may shift to the game designer when the project gets to
core game prototyping. (The types of prototyping are introduced in Chapter
11, “Playtesting Your Game.”) Being aware of the shifting demands on
different aspects of the design process is an important part of keeping a
team productive. At times, this can mean the team needs to make changes to
the overall schedule to accommodate other responsibilities and needs.
Time is a precious resource, as are labor and money. While many games can
be made by “sweat equity” (labor invested in the project in hopes of future
returns), there are inevitable expenses the team will encounter—software
licenses, game controllers, travel to events to showcase the game, snacks
for playtesters. It is important to recognize and respect the time, financial,
and material resources team members can afford to give the project.

Team Agreements
Once team roles are established and time commitments are understood by
everyone, the next step is putting together a team agreement. Team
agreements spell out how the team is going to interact, how decisions are
made, how ownership of the game is handled, and many other important
elements of collaborations between individuals. This may seem overly
formal for a small-team game project, but the fact is, team agreements
really can help a lot when things go incredibly bad, or, even more, when
they go incredibly well. While this aspect of the process is perhaps outside
the game design and development scope of this book, it is nevertheless
important as you identify team roles and responsibilities and will prove
invaluable as you all embark on the process of making your game.

 Goal: What is the purpose of the team? Knowing why you have come
together is one of the most important things to capture in the
agreement. Is it to bring the game to market? To be the first product of
a new game studio? To create a proof of concept to enter in contests
or shop to publishers? To give away? To display at game events or in
a gallery? To successfully complete a school assignment?
 Team member status: Defining what it means to be a member of the
team is important. Does it mean you have voting rights? Does it
require a certain amount of time? What happens when a team member
decides to leave the project or put their participation on hold?
 Ownership: If things go really well (your game ends up on a featured
carousel on Steam or as a featured game on the Apple App Store, as a
favored game at festivals and conferences, in the Museum of Modern
Art) or really poorly (team members invest time, energy, and
resources into a game that is never finished or doesn’t find an
audience), the team will want to establish how ownership of the game
is calculated. Is it an even split among team members? Is it based on
time put into the project? What happens to an ownership stake if a
team member leaves the project before, during, or after its
completion?
 Participation expectations: Making clear the team’s expectations of
its members is important to avoid conflicts around everyone’s
participation. Sometimes this is measured by time estimates,
sometimes it is based on simply carrying out the assigned tasks, and

sometimes it is not measured at all. The important thing here is
everyone understanding how they and their team members are
expected to participate in the project.
 Roles: Depending on how a team operates, they may want to establish
the roles the team needs and who will fill each. It is also important
here to acknowledge the shifting needs of the project and roles that
may shift as you move from iteration to production to game release.
 Decision-making: There are many kinds of decisions to be made
when designing a game—the design values, what to prototype and test
next, but also decisions about whether or not to bring in a new team
member, to spend money on tools or assets, and so on. Having
protocols for how the different classes of decisions are made is
crucial. Break down decisions into creative, process, and business.
For each, identify what agreement means—majority rules, two-thirds
agreement, consensus, and more.
 Term of agreement: Understanding the timeframe under which the
team operates is the last important detail. Is it within the confines of a
course or school program? Is it something everyone agrees they will
work on for three months? A year? Knowing how long the team
agrees to work on the project helps everyone measure time and create
milestones for the project. Equally important is having a plan for
extending the agreement, and in some cases, bringing it to an early
conclusion.

Collaboration Tools
One of the seemingly mundane but critical aspects of collaboration is
creating and refining the way your team works together. There are times
you need everyone’s attention and times when everyone needs to focus on
their work. Sometimes a decision requires a meeting, and sometimes it
requires just a short chat between a couple of team members.
Related is knowing when and how the team will meet. It might seem
obvious, but having a handle on this is critical to a game’s successful design
and development. Will the team meet in person? Online? A mix of the two?
For us, we tend toward a blend, with most work done remotely, and
meetings held in person or over videoconference software.

Having a solid set of tools to track collaboration is essential. There are a lot
of really useful tools out there, each perfect for different teams. We use a
variety in our work, and often what we use will depend on the project.
These broadly break down into three categories: file sharing, task
management, and communication.

 File sharing: One of the more important kinds of tools is file sharing
—without this, teams will have a hard time keeping track of the game
design documents, schematics, playtest plans (covered in Chapter 11),
and other important materials. Tools like Google Drive and Dropbox
allow for cloud-based document sharing and work well as a place to
keep important files everyone on the team needs to access. A more
robust class of file sharing for actual project codebases is found in
version control software such as Apache Subversion (SVN) and
Concurrent Version Systems (CVS). These are the tools that allow
teams to have a shared repository for the living documents of a
project—code bases, 3D models, art files, and more. They allow team
members to “check out” a file so that they can work on it without
others writing over their work.
 Task management: Equally important are tools that manage workflow.
There are a lot of options, from the task spreadsheets described in
Chapter 7, “Game Design Documentation,” to the shared tools like
Trello and Basecamp. All these are excellent ways to create and stay
on top of the team’s schedule.
 Communication: The final category of collaboration tool is around
remote and asynchronous communication. While some teams will
work in a shared physical space, many will not, so having channels
for communication is important. Here as well there are many options
—Slack, Skype, even Google Plus or Apple’s Messages.

We suggest trying the simplest, most familiar, most popular, and least
expensive tools you can find, and if they don’t work for the team or you
need other functionalities, going from there. Ultimately, choosing the right
tools for your collaboration is all about what everyone feels most
comfortable using and what people will actually use. For example, we have
tried more specialized task management software several times, but we
always return to simply sharing a spreadsheet. The key here is that using the

tools is seamless and easy—and doesn’t get in the way of spending most of
your time working on your game.

Running a Meeting
It may seem like there isn’t anything to say about running meetings, but the
fact is that keeping them productive, focused, and conflict-free is no small
task. Poorly run meetings can sidetrack the best-laid plans, or even worse,
hurt team morale and the progress on a game’s design. On one hand,
meetings are time not spent working on the game. On the other hand, they
are an opportunity to share ideas and progress and to ensure everyone is
working toward the same goal. There are a lot of theories about running
meetings—from informal standing meetings to Robert’s Rules of Order3 to
consensus decision-making. They all work—or don’t—depending on the
team, the project, and the context in which the work is being done. If you
would rather not focus on a particular methodology, plan for the basics of a
productive meeting: goals, agenda, talking rights, decision-making, action
items, and note-taking.

3 Robert’s Rules of Order was created in 1876 by Henry Martyn Robert and continues to be used
and revised to this day.

 Goals: What is the meeting about? What does the team hope to
achieve? Having a set of conversation topics will make the meeting
more focused and productive for everyone. Using the “for discussion”
sheet list in your project management spreadsheet (from Chapter 7) is
great for keeping track of your team’s goals. These goals should be
steered by the increasingly granular breakdown of long-range, mid-
range, short-range, and immediate tasks. For full team meetings,
staying at a level of abstraction above immediate tasks is smart
because it keeps the meetings from bogging down in details that don’t
pertain to everyone. For smaller meetings around specific short-range
tasks, getting into detailed immediate tasks makes more sense.
 Agenda: With the goals in mind, the team should create an agenda for
the conversation. This involves which topics will be discussed, in
what order, and for how long. An agenda keeps the team on track and
helps keep focus on the topic at hand.
 Talking rights: When a group of people with passionate opinions on a
subject get together, it is often hard to get a word in edgewise. To help

manage the well-intentioned enthusiasm of your team, establish a
protocol for who can talk when and how that person communicates
when they are done. Of course, there is a fine art to discussion and
dialogue, but it is also important that everyone be heard and that the
loud and forceful don’t win out over the quiet and polite.
 Decision-making: How will the team make decisions? There are so
many things to make decisions about when designing a game, but the
most important are those around what to prototype, how to test it, and
what to do next based on the outcome of the playtest. So establishing
a process for how decisions will be made is essential. Here again,
consensus decision-making can provide some guidance.
 Action items: A meeting without action items is just a conversation.
Make sure everyone has a list of action items based on the discussion
and decisions made during the meeting. These should be transcribed
into the “task list” sheet discussed in Chapter 7.
 Note-taking: To help capture the discussion and decisions, someone
should take notes. Using the agenda as an outline is a helpful way to
do this. Moreover, rotating who takes notes is a smart way to share
the responsibility from meeting to meeting. These notes should be
kept in a place accessible to the whole team. Using a Google Doc that
contains a running set of notes for all team meetings is a good idea
since it allows the team to revisit previous meetings as necessary, as
well as translating the notes to action items in the tracking
spreadsheet, including any updates necessary in the design document.

The Soft Skills of Collaboration
Equally important to the successful design process are the “soft skills” of
being a good team member. It is important for the team to recognize the
shared and divergent values and goals of all team members. Some will
value the freedom to manage their own time, while others are fine with a
detailed schedule but prefer to work at night or only during the workweek.
Some will have strong personalities, while others will be shy and quiet.
Some will be on the project for the experience, while others might be
because they really love the game’s concept. One team member may prefer
coworking, while others prefer asynchronous work. This team member may
prefer daily meetings, while that team member may prefer no meetings but
having a constant open chat session among the team for questions and
discussion.
There is no single right way to run a team, and finding the right way for a
team will take time, patience, and mutual respect. Listening to each other,
being open to ideas radically different from your own, and giving credit to
teammates are just a few of the most important skills to develop to work
effectively in teams. And even if everyone works well together, learning
how to resolve conflict is something that can test anyone’s patience. This is
where structures like meeting agendas, agreements, and even the iterative
process come in handy. During some of the biggest conflicts on design
questions, it’s often the prototyping and playtesting process that we can fall
back on to help resolve things and show the way.
Special attention should be paid to make sure everyone’s opinions are
heard. Since not everyone is comfortable speaking up on their own, it is
helpful to pose questions to the group, give prompts to those who are more
soft-spoken, and give opportunity for written feedback before or after
meetings. Strategies like these can go a long way to make sure everyone’s
thoughts are taken into account.

Resolving Differences
Put talented, passionate people together, and you are bound to encounter
differences of opinion, personality, methodology, and so on. This is
inevitable. The trick is to find ways as a team to work through your
differences and turn them into strengths, not weaknesses.

In their book, WOVENText,4 Rebecca Burnett and her collaborators identify
three core kinds of conflict in teams: procedural, affective, and
substantive.

4 Rebecca Burnett, Andy Frazee, and Robin Wharton with Katy Crowther, Kathleen Hanggi,
Jennifer Orth-Veillon, Sarah Schiff, and Malavika Shetty, Georgia Tech WOVENText version
2.1. New York: Bedford St. Martin’s, 2012.

 Procedural conflicts: Procedural conflicts relate to the processes
through which a team collaborates. Does someone feel unheard based
on how meetings are conducted? Is the schedule too loose or tight?
Do team members feel constrained by or uncertain of their
responsibilities? Procedural conflicts are systemic in nature and can
be worked on iteratively. Seek out solutions to the problems causing
the conflicts, and implement changes to see if things get better for
everyone.
 Affective conflicts: Affective conflicts are those relating to team
members’ feelings, which in turn relate to their goals, needs, and
wishes for the project. As Burnett notes, affective conflicts often
emerge from differences in values, which often derive from factors
like gender, creed, culture, class, age, and sexual orientation. Dealing
with this sort of conflict can be a real challenge, as it is often borne
from deeply instilled ways of thinking and belief. The best way to
avoid affective conflict? Be open to other points of view, develop
active listening skills, and most important, be willing to reflect on the
ways your own identity, beliefs, and behaviors impact those around
you.
 Substantive conflicts: Finally, substantive conflicts are those relating
to the game itself—things like what kind of game it is and what kind
of experience the team wants to provide players. These are the “good”
kind of conflicts, within reason. Best case, substantive conflicts come
from team members’ commitment to the game and wanting it to be the
best it can be. Worst case, substantive conflicts come from team
members’ wanting to overly assert their own vision of the game. The
best way to handle this sort of conflict is to return to the design values
the team has established and to make sure everyone is still on the
same page.

One of the benefits of the iterative design process is that it provides insight
into the game’s design in ways other methodologies do not. Instead of

relying solely on the opinions of team members, well-done playtesting will
illuminate the strengths and weaknesses of your game. This can help push
through the substantive conflicts, so long as the team is willing to
objectively learn from what playtesters show and tell.

Understanding Failure
One thing is certain about the iterative game design process: failure is going
to happen. This is a good thing, particularly early in the process, as it helps
strengthen a game’s design. But there are also challenges that come with
failure, as failures are often the cause for some of the conflicts that emerge
during collaborations. Spotify’s Henrik Kniberg talks about not worrying
about whose fault a particular problem is but rather what was learned from
the failure and how the issue will be addressed.5 Keeping things
constructive is always important. The iterative cycle is an excellent tool for
constructively handling moments of failure. Looking back at the prototype
and its playtest will often hold answers to these questions of what was
learned and how it will be fixed.

5 “Spotify Engineering Culture (Part 2)” by Henrik Kniberg.
https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/.

Of course, not all failures are alike. Design researcher Jamer Hunt describes
the kinds of failure we might encounter and which ones are most productive
in the design process:6

6 From Jamer Hunt’s Fast Company article “Among Six Types of Failure, Only a Few Help You
Innovate.” www.fastcodesign.com/1664360/among-six-types-of-failure-only-a-few-help-you-
innovate.

 Abject failure: This is failure at its most final and devastating. For a
game, this might be failure to meet your final goals or the team
dissolving due to irreconcilable differences.
 Structural failure: A failure, often technological. For a game, this
might be bugs that make the game unplayable or a platform change
that renders the game broken.
 Glorious failure: A grand failure, or “glorious trainwreck”—a game
that aims high and fails big, but in a way that provides valuable
lessons or an exciting cultural moment.
 Common failure: Everyday moments of messing up, such as the team
not meeting deadlines or someone sleeping through a meeting.

https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/
http://www.fastcodesign.com/1664360/among-six-types-of-failure-only-a-few-help-you-innovate
http://www.fastcodesign.com/1664360/among-six-types-of-failure-only-a-few-help-you-innovate

 Version failure: Bugs and glitches that lead to incremental
improvement. This is often why we see so many updates on the App
Store.
 Predicted failure: This is the kind of failure we’re talking about when
we talk about iterative design. We all know there will be failures in
our prototype that our playtesting will reveal. This is the “good” kind
of failure we need to happen to improve our game.

Early in the game design process, structural, common, and version failures
are expected and welcomed. Throughout the process, predicted failures are
desired, as they create safe places within which the team can experiment
with limited risk. Glorious failures are sometimes needed to learn important
lessons from taking large risks. Sometimes they are formative for the next
project. Abject failure? It’s certainly the most foreboding of the kinds of
failure. It’s also important to know that all of the best designers have, in
some way or another, been through this kind of failure. However, it can
certainly be mitigated if the team is open to failing early on in the process
and addressing those failures.

Summary
Making games is often a collaborative effort—and collaboration is an art in
and of itself. Creating an environment and set of practices that ensure
everyone is engaged, has a say, and is contributing their best ideas and work
to the project involves planning and thought. Strategies to manage
disagreements like consensus decision-making, writing team agreements,
and using tools to help everyone track meeting results and action items will
go a long way to ensuring that your game is the best it can be.

Part III: Practice
 Chapter 9: Conceptualizing Your Game
 Chapter 10: Prototyping Your Game
 Chapter 11: Playtesting Your Game
 Chapter 12: Evaluating Your Game
 Chapter 13: Moving from Design to Production

Chapter 9. Conceptualizing Your Game

This is the start of the journey to making a game. But what will that game
be? There’s nothing more daunting than a blank screen, but there’s also no
shortage of ideas, people, places, things, dreams, and other games to be
inspired by. Conceptualizing your game starts with just a thought, but it
doesn’t end there. Using techniques such as brainstorming, motivations, and
design values will help turn those ideas into a game design.
The first phase in the iterative game design process is conceptualize—
developing an idea for the game and its play experience. At the beginning of
the iterative design process, the focus is on generating the concept of the
game. Once the first loop is complete, the conceptualize phase becomes
more about refining and revising the game’s design and solving design
problems that become visible through prototyping and playtesting. This
chapter covers a set of processes and techniques for coming up with the
initial concept for a game and covers methods like brainstorming, which will
be helpful in deepening and refining the game as it moves through
successive iterative loops.

Figure 9.1 Conceptualization begins the iterative cycle.

Generating Ideas for Your Game
There are many ways to come up with ideas for games. They can come from
life experiences, media, books, and even other games. Chris Bell was
inspired to create Way after getting lost in a Tokyo fish market and
communicating with an elderly Japanese woman through gestures and
movement to find his way out.1 Playing Way, you can see how this
experience informed the game—it is all about nonverbal communication,
using gestures to connect two players in a united goal. Way is a game that
was inspired by an experience that meant something to Bell. But it simply
provided the kernel of an idea for the game. The game itself is about
nonverbal communication, but it doesn’t take place in a fish market in
Tokyo. Ideas for games can come from many different places and be about
anything you can imagine.

1 Chris Bell, “Designing for Friendship: Shaping Player Relationships with Rules and Freedom,”
GDC 2012. www.gdcvault.com/play/1015706/Designing-for-Friendship-Shaping-Player.

http://www.gdcvault.com/play/1015706/Designing-for-Friendship-Shaping-Player

While there are lots of videogames with fantastic worlds filled with space
marines, wizards, and tiny plumbers, there’s much more we can make games
about. In anna anthropy’s book Rise of the Videogame Zinesters, she talks
about how all kinds of people are making games about all kinds of different
topics. She lists some of the things games can be about, many of them based
on personal experience:

What to Make a Game About? Your dog, your cat, your child,
your boyfriend, your girlfriend, your mother, your father, your
grandmother, your friends, your imaginary friends, the dream you
had last night, the experience of opening the garage, a silent moment
at a pond, a noisy moment in the heart of a city, the lifestyle of an
imaginary creature, a trip on a boat, a trip on a plane, a trip down a
vanishing path through a forest, waking up after twenty years of
sleep, a sunset, a sunrise, a lingering smile, a heartfelt greeting, a
bittersweet goodbye. Your past lives, your future lives, lies that
you’ve told, lies you plan to tell, diary entries. Jumping over a pit,
jumping into a pool, jumping into the sky and never coming down.

Anything. Everything.2

2 anna anthropy, Rise of the Videogame Zinesters: How Freaks, Normals, Amateurs, Artists,
Dreamers, Drop-outs, Queers, Housewives, and People Like You Are Taking Back an Art Form.
pp. 137-138, 2012.

As you can see from this list, games can be about stories from the personal
to the fantastical and everything in-between. Ideas can certainly come from
anywhere—and they can happen anytime. In fact, because they can come
from all kinds of experiences, you might have an idea in the middle of the
Tokyo fish market, on the beach, or in the shower.

Brainstorming
One of the best ways to generate and capture ideas is brainstorming.
Brainstorming is a technique meant to fully explore all of the possible
answers to a design question, coming up with as many ideas as possible.
Techniques for brainstorming were first described by Alex F. Osborn in the
1953 book Applied Imagination.3 There, he outlined the primary rules for
brainstorming:

3 Alex F. Osborn, Applied Imagination: Principles and Procedures of Creative Problem-solving,
1953.

 Quantity over quality: The golden rule of brainstorming is to come up
with as many ideas as possible—no matter if you think they’re good,
bad, or ugly.
 Defer judgment: Don’t judge your ideas, or if you’re in a team, the
ideas of others. The point of brainstorming is to come up with lots of
ideas—not to limit them through judgment.
 No buts (just ands): Add on to each others’ ideas (or your own). So
instead of saying, “but there are no tubes to another dimension on a
hike in the woods” say, “...and what if they lead to rooms full of coins
and other goodies?”
 Go wild: Let your ideas be as wild and improbable as possible. It’s
easier to rein in a far-out idea than it is to try to breathe some fun and
creativity into conservative ideas after the fact.
 Get visual: Drawing something can sometimes capture an idea better
than words.
 Combine ideas: Once you have some ideas written down and drawn,
mix them up, and look at how they combine. You could come up with
something unique from the combination of different ideas.

There are many different ways to brainstorm, but the rules are always the
same. It’s important not to limit ideas in the beginning. You want to build on
each others’ ideas (by focusing on “yes, and...” and most importantly, to
defer judgment. This can be challenging, as it’s natural to try to sort out the
most promising direction—but don’t worry—that part is coming. The point
of the brainstorm is to come up with lots of ideas to sort through later. Some
brainstorming techniques work well with teams, while some are suited to
individuals. Some are good for focusing on a single question, while other
brainstorming methods help expand to many different possibilities. Some
work well for the first pass at conceptualization, and others work best for
later iterative cycles.
The goal of brainstorming isn’t just generating lots of ideas. It is to help get
the creative juices flowing, to get team members thinking and riffing off one
another and to value everyone’s ideas, no matter the role they might play in
the design. It’s also a great way to come to agreement as a team about what’s
important. It isn’t the only way to get ideas going, but it is one we use in our
work and one we use with our students. Here are a few brainstorming

techniques we have found particularly helpful during the conceptualization
process.

Idea Speed-Dating
Idea speed-dating (see Figure 9.2) is a way for groups to generate a lot of
ideas for games, often unexpected and exciting ideas. It’s best done at the
very beginning of the game design process to come up with game concepts.
It is also a productive way for teams to share all of their ideas and then
collectively home in on the most promising ones.

Figure 9.2 A group participating in an idea speed-date.

To prepare, everyone should come with a game idea to share with the group.
To get started, grab a timer, some 8.5″×11″ paper, markers, and pushpins or
tape. Each participant should write a game idea on a sheet of paper in one or
two sentences—maybe “Unicorns jousting with dinosaurs.” Once everyone
has their ideas written down, the group should sit down in pairs to pitch their
ideas to one another. For example, one person might present their unicorn
and dinosaur idea, while the other might have something like “Soccer in
complete darkness. The ball is the only source of light.” Then together the
pair should spend a few minutes coming up with a game idea that is a mash-
up of the two ideas. This might be “unicorns and dinosaurs trying to gain

possession of a light-emitting soccer ball in the darkness so that they can
find their way home.” (Remember “yes...and?”) This is a great way to build
on the ideas of each other, coming up with new and unexpected concepts.
Often, the newly mashed-up ideas are even more compelling than the
original ones. The pair writes the idea on a sheet of paper, and those along
with the original ideas are then looked at by the team and either voted on or
chosen based on consensus.
We always suggest a form of distribution voting, where everyone has a set
number of votes they can use as they like. Five is a good number, or you
might modify this based on how many ideas have been generated and how
many voters there are. Everyone adds votes to ideas by drawing a mark on
the sheet for each of the votes they want to give that idea. It’s okay for a
participant to assign all their votes to one idea if they think it is most
promising, or distribute them on different ideas. Once the votes are made,
we suggest discussing the most voted items and coming to consensus as a
team (covered in Chapter 8, “Collaboration and Teamwork”), or using this as
a way to build small teams out of a larger group through ideas. This is how
we divide our game design classes into teams at the beginning of a semester.

“How Might We...” Questions
Another way to brainstorm ideas is around a “how might we...” question.4
This question is going to be the seed for the brainstorm. For example, “how
might we model the fast food industry so that players learn about
sustainability, obesity, and capitalism while still having fun?” Or, “how
might we create a journey that generates a sense of awe and camaraderie?”
The “how might we...” question opens up the brainstorm to all kinds of
possibilities.

4 The “how might we...” question comes from an exercise that the design firm IDEO originated,
found online as part of its design kit: www.designkit.org/methods/3.

In the previous example, we could ask, “how might we design a game
around unicorns and dinosaurs trying to gain possession of a light-emitting
soccer ball in the darkness so that they can find their way home?” This
example is too specific for early-stage ideation but can work well later in the
game design process. A good “how might we...” question is not too specific
and not too broad (for example, “how might we create a competitive
game?”). We want the question to generate a variety of possible concepts, so
we could refine our question to enable that: “how might we create a game

http://www.designkit.org/methods/3

about creatures finding their way home?” As you can see, with the “how
might we...” method we have a general concept or design problem already,
and we’re using the brainstorm to consider the ways we can represent or
solve it in a game. We’re thinking through the details of an idea to various
ways the game might look, feel, and play.
In some cases, a “how might we...” question can leave more up in the air in
terms of the gameplay and content. For example, “how might we create a
game to help educate children about healthy eating habits?” Here we might
brainstorm a game that is based around different kinds of gameplay, different
themes, and stories, but all focused on the goal of educating young people
about proper nutrition. Ultimately, the “how might we” method is a great
way to use a question as the engine for your brainstorm, helping everyone
focus on the same thing but come up with as many possible solutions as they
can.
We like to use the silent method for “how might we” brainstorms (see Figure
9.3). To do this, make sure to have Post-it notes—the original square kind.
They provide just the right amount of room to write down or draw one idea
—not two or three ideas per note, just one. This is important so that these
ideas can be sorted later and put into clusters. Markers are also essential. You
can’t write too much with these, so it helps keep ideas to one idea on a Post-
it. And the writing can be seen from far away—important when they are put
up on the board to be discussed.

Figure 9.3 Brainstorming materials.
A silent brainstorm involves just that: silence. Set a timer for 10 minutes,
make sure everyone has a stack of Post-it notes and a marker, and see who
can come up with the most ideas. This is a great way to make sure that
everyone’s ideas are captured, and the slightly competitive element drives
everyone to go for the brainstorming rule “quantity over quality.” When the
timer is done, everyone puts their ideas up on the wall and takes turns
describing their ideas to the group. Ideas can be clustered into themes, new
ideas developed from the combination of ideas, and ideas voted on, as in the
idea speed-dating example. Finally, to make sure we don’t lose all these
ideas, we always document in a couple of ways. We take pictures of the
grouped Post-its and transcribe them to a shared document.

Noun-Verb-Adjective Brainstorming
A final way to brainstorm is to develop nouns, verbs, and adjectives to
brainstorm around (see Figure 9.4). This form of brainstorming is a way to
take a concept, break it apart, and make something new out of it. Or take a
more complex concept and break it down into components that can form the
basis for a game. What you end up with at the end of the exercise is a much
better understanding of the potential objects (nouns), actions (verbs), and
emotions (adjectives) in your game. We often use this kind of brainstorming
to break down a real-world system and come up with ways to represent it in
a game. For example, if we’re designing a game to help children make good
eating choices, we can take a moment to write down on separate index cards
as many nouns, verbs, and adjectives that come to mind. For nouns, we
might have broccoli, snack, parents, teachers, friends, grocery store, farm,
candy bar.... For verbs, eating, jumping, talking, playing, craving...and
adjectives, salty, sweet, hilarious, fuzzy, gigantic, sleepy.... We can then
shuffle the cards and form combinations to create a “how might we...”
question for a brainstorm: “how might we create a game to promote healthy
eating with gigantic jumping broccoli?” We often add a few unexpected
verbs and adjectives in there to keep things interesting. You can also spend a
few minutes brainstorming a variety of noun-verb-adjective combinations or
have more than one of each. The key to a noun-verb-adjective brainstorm is
to help you come up with unexpected solutions to a game design problem.

Figure 9.4 Cards from a noun, verb, and adjective exercise.
To get started, grab some index cards in three different colors along with
some black markers. Using the silent brainstorming process discussed in the
“how might we...” exercise, everyone should individually think up and write
down one noun, verb, or adjective on a corresponding colored index card.
Once the brainstorm is complete, review as a group to see which everyone
likes and which don’t fit the collective vision for the game. More often than
not, this discussion will generate more nouns, verbs, and adjectives—write
those down, too.

Motivations
Once a game idea is formed, attention should shift to the game’s focus. Is it
all about the play experience and the main actions players get to use? Or is it
more about exploring a narrative world? Is it a game meant to convey a
feeling or idea? Or a game meant to simulate something in the real world?
Journalists use the term angle to describe the perspective from which they
are telling a story and their intention in researching and writing the piece.
Similarly, understanding the angle you will take to craft your game will help
you identify important questions to answer. A motivation is just that—the
angle you are taking in the game’s design. Motivations link the basic game
design tools discussed in Chapter 2, “Basic Game Design Tools” with the
kinds of play covered in Chapter 3, “The Kinds of Play” and help set the
stage for your design values described in Chapter 6, “Design Values.”
The main motivations are designing around the main thing the player gets to
do, designing around constraints, designing around a story, designing around
personal experiences, abstracting the real world, and designing around the
player. We tried to be fairly comprehensive in this set of motivations, but just
as game ideas can come from anywhere, there are certainly game design
motivations beyond these. The key here is to design based on the kind of
play experiences we want to create, unconstrained by genre, technology, or
other preconceived notions of games, while at the same time creating a clear
direction for setting the game’s design values.

Designing Around the Main Thing the Player Gets to Do
Games allow us to do things we may not normally be able to do in real life,
such as play a detective, an elven warrior, or an agile plumber. Or, for
instance, they allow us the simple pleasures of surfing the sand dunes in
Journey. It’s not a direct model; it’s an enhanced one that draws inspiration
from the real-life event of running on the dunes and merges it with surfing
and gliding to create a truly memorable experience. When designing around
the main thing the player gets to do, the focus should be on the game’s
actions. There are many ways to think about player experience, but here are
some of the key questions:

 What does the player get to do? Games are all about doing. What
actions does the player get to perform, both mentally and physically?

 What is going on in the game? What actions are happening inside the
game to make players want to perform these actions?
 What are some adjectives that describe the play experience? What do
you want players to feel while performing these actions?

For Johann Sebastian Joust (or for short, J.S. Joust) (see Figure 9.5), the
main thing the player gets to do is a big part of the entire experience of the
game. Douglas Wilson, creator of the game, describes it as a “digitally
augmented playground game.”5 In J.S. Joust, players hold Playstation Move
Motion controllers, attempting to jostle other players’ controllers while
remaining the last person standing. Bach’s Brandenburg Concertos play in
the background. When the music is slow, the Move controllers are more
sensitive, forcing players to move very slowly, as if they are in slow motion.
When the music speeds up, players can move more quickly, allowing them
to try to jostle other players’ controllers with more speedy movements. The
main action that inspired Douglas to design the game? Not necessarily
jostling controllers, although that is one thing players do in the game to
achieve the goal of being the last player standing. It’s actually moving in
slow motion. This is the main action J.S. Joust is designed around—
everything else being derived from that. As Douglas describes his approach:
“my experience designing B.U.T.T.O.N. and J.S. Joust suggests a different
starting point: find an activity that’s already fun—say, roughhousing your
friends, or moving in slow motion—and only then work to iterate a game
system into the mix.”6 Douglas describes seeing a playground game where
players were moving in slow motion and realizing that there was something
inherently fun about it for players and for those watching them. Building
from that simple, theatrical action, J.S. Joust is just that—almost as much
fun to watch as it is to play.

5 GDC China 2012, “The Unlikely Story of Johann Sebastian Joust,” Douglas Wilson.
6 “Designing for the Pleasures of Disputation—or—How to Make Friends by Trying to Kick

Them!” Douglas Wilson, PhD dissertation, 2012.

Figure 9.5 Johann Sebastian Joust. Photo by Elliot Trinidad. Used with
permission of the IndieCade International Festival of Independent Games.

Designing Around Constraints
In addition to the earlier question, “what can the player do?” is “what can the
player not do?” Soccer, for example, constrains players’ ability to touch the
ball, using anything but their hands. Or Terry Cavanaugh’s platformer vvvvvv
(see Figure 9.6) doesn’t let the player jump at all. Instead, the player has to
switch gravity to get over even the smallest step. This is really a different
take on the “what the player gets to do” approach, as it is about creating play
by making the player work around the obvious way to achieve a goal. Part of
the fun of games is how they generate interesting challenges by forcing us to
overcome limitations on our actions or resources.

Figure 9.6 Terry Cavanaugh’s vvvvvv.
In addition to constraining players, our game’s concept can benefit from
constraint. Constraints are the designer’s best friend. In fact, the famed
product designers Ray and Charles Eames say that, “design depends largely
on constraints.”7 Constraints can be an inspiration behind your game’s
design. In the early days of videogames, technology provided an incredibly
influential constraint. Ever wonder why early Atari 2600 games used
rectangular pixels over square ones? The answer is found in the relationship
between the hardware and the television and how that information was
processed. Designers those days used the limitations of the medium as
inspiration in a variety of games, such as the horizontal rainbow colored
bricks and paddles in Breakout (see Figure 9.7), which used the horizontal 8-
bit graphics as a feature to define the shape of the bricks.

7 Qu’est ce que le design? (What Is Design?) at the Musáee des Arts Dáecoratifs, Palais de Louvre
in 1972.

Figure 9.7 Breakout. Image credit: Fuyuan Cheng, used under Creative
Commons Attribution-ShareAlike 2.0 Generic.

Technological constraints are also found today, but in addition, constraints
are often used to limit the possibilities of technologies that are far more
developed. Canabalt, described earlier in this book, was a design in response
to the challenge of creating a game that used only one button. The game’s
designer, Adam Saltsman, describes his original idea, which was inspired by
the concept of minimalism and developed at a game jam:
“As soon as I thought ‘Super Mario with one button,’ obstacles and level
structures became obvious.”8

8 www.stuff.tv/features/weekend-read-how-canabalt-jumped-indie-game-jam-museum-modern-
art#kUCG9h1o2d8YOqiT.99.

Constraint, both in terms of constraining what players can do and providing
interesting limits on our game’s design, can generate creativity in
overcoming them. Following are a few considerations we like to keep in
mind when designing around constraints:

 What does the game keep the player from doing? How is the player’s
ability to overcome challenges limited? What do these limitations open

http://www.stuff.tv/features/weekend-read-how-canabalt-jumped-indie-game-jam-museum-modern-art#kUCG9h1o2d8YOqiT.99
http://www.stuff.tv/features/weekend-read-how-canabalt-jumped-indie-game-jam-museum-modern-art#kUCG9h1o2d8YOqiT.99

up for players?
 Where does the challenge come from? What is pushing back against
the player’s ability to achieve their goals?
 How do players make decisions—real time or turn based? Limiting the
player’s time and ability to evaluate their options and make their next
action is a great form of constraint.
 Is the game competitive, cooperative, or both? The goals and to what
end players are interacting are forms of constraint.
 What is the mix of strategy, skill, chance, and uncertainty? Are there
unpredictable elements in the game? What interesting choices can the
player make? How skilled must the player become to achieve the goals
of the game?
 How does the player see, feel, and hear the game? What constraints
come through the player’s ability to perceive the game? Is any
information hidden?
 How can we use constraint in our design process? What are some
ways we can constrain our choices as designers? How can we use
limitations to our advantage?

Designing Around a Story
Another core consideration for a game might be telling an interesting story,
or perhaps to be more precise in how games tell stories: developing a
storyworld. Perhaps you are interested in developing a character through
your game, or maybe you have an idea for a setting or historic moment to
situate your game in. The Fullbright Company’s Gone Home is a great
example of designing around a story. Instead of trying to tell a story through
scenarios resolved by characters through actions, Gone Home asks players to
uncover the story by exploring an empty house. Gone Home tells a story, but
in a uniquely exploratory and game-like way. The player inhabits the role of
Kaitlin, a college student coming home from college to discover the family
house abandoned. The player then moves through the house examining
objects, listening to tapes, reading letters, and otherwise learning about the
family’s story through artifacts.
Questions to ask if you are interested in designing around a story include
these:

 What is the game’s theme? What is the game about? Is there a point of
view or moral to the story? In what kind of world does it take place? Is
it inspired by a historic period?
 What is the player’s role in telling the story? Is the player watching a
story unfold, or are they an active participant? How do their actions
advance the plot?
 How many different outcomes or paths will there be through the story?
Do players progress through a predetermined set of story elements?
Does the story branch? Are there optional moments in the game?
 What are some adjectives that describe how the story will make
players feel? What emotional state will your story bring about in your
players?
 What are the important verbs in the story? What are the important
nouns? Can the story be abstracted down to key actions, or verbs, and
key people and things, or nouns? Can these in turn be used to develop
the game’s structure?
 What will the player be left thinking about after their play experience?
Are the ideas you hope to explore in the game coming through the
story? If so, what will it lead the player to think about?

Designing Around Personal Experiences
Personal experiences can be a big inspiration for creating games, although
interestingly enough, the personal story is not as prevalent in games as it is
in mediums like writing and film. This may be because we are early in
videogames’ history and still developing a language and set of techniques to
express ideas with games. That said, there are some pioneers out there
making incredible games about personal experiences.
anna anthropy’s dys4ia (see Figure 9.8) is a journal game describing anna’s
experiences with hormone replacement therapy. Players experience what
anna experiences and thinks as they move through the different sections of
the game. Way is an abstraction of Chris Bell’s personal experience—for
instance, the game does not take place in the Tokyo fish market and does not
include Bell as a protagonist, but it is still inspired by that one personal
experience.

Figure 9.8 Screenshot from dys4ia.
Questions to ask if you are developing a game around personal experience
include these:

 How autobiographical will the game be? Is this game a memoir of a
particular experience you had? Will you include actual dialogue,
places, and people? Images from your life?
 Will the game be a more abstract representation of your experience? Is
the game meant to express a feeling or experience you had but displace
it from the particular details of your own? What kind of
representations, settings, and characters would help express the
experience?
 What are some of the verbs or actions you can include to help the
player understand the experience and feel it for themself? What
physical activities are involved in the experience? What actions can

express the conflicts or challenges in the experience? How will the
player unfold the experience through their interactions with it?

Abstracting the Real World
Games are a medium defined by systems. As Donella Meadows states, “A
system is a set of things—people, cells, molecules, or whatever—
interconnected in such a way that they produce their own pattern of behavior
over time.”9 Meadows’ definition is used to describe the systems that
underlay much of how the world works. Games are systems too and are well
suited to modeling systems that exist in the real world. They are also
abstractions. The world itself is a pretty complicated place—games take that
complexity and boil it down into simple rules. When abstracting a system in
the real world, we need to choose a player point of view, a core set of
actions, and a way to provide feedback to the player about the impact of
their actions.

9 Donella H. Meadows, Thinking in Systems: A Primer, 2008.

In Molleindustria’s McDonald’s Videogame (see Figure 9.9), Paolo Pedercini
chose to show the system of fast food by leveling players up through
different perspectives—from pasture to feedlot to restaurant to corporate
board room. Each level has a different set of actions, constraints, and
materials, but they all combine to contribute to the franchise’s bottom line:
profit. The modeling makes it clear how difficult it is to run a profitable
company without cutting corners or implementing questionable policies. The
abstraction serves to tell a story and represents a set of concepts Pedercini
wants to highlight.

Figure 9.9 Screenshot from McDonald’s Videogame.

Questions to ask when designing games that abstract the real world include
these:

 How does the system in the real world work? What are the elements in
the system? How are they connected? What are the dynamics of those
connections? What are the inputs and outputs of the system?
 What does the game say about this system? How changeable is the
system? What kinds of actions does the system reward? Is the system a
reflection on a societal or a human problem?
 How can player point of view and feedback help players understand
how the system works? Is the player an element in the system, or are
they above it, in a bird’s eye view? Do they have any control over how
the system works, or are they subjected to the rules of the system?
How does the game reward or penalize actions within the system?
 What does the abstraction leave out? Just as important is considering
the things removed from the real-world phenomenon to create a
simplified representation for the game.

Designing Around the Player
For many games, players are among the most important considerations. Who
do you imagine as the audience for your game? What are they like? A great
tool for fleshing out your player is personas. Personas, a tool developed
initially by Alan Cooper in his book The Inmates Are Running the Asylum,10

are fictional players that are based on the attributes we think our players will
have. A persona has a name, age, job, education history, and other details,
such as the kinds of games and other media they might like (or dislike, for
that matter). Often, teams will create two or three personas to guide their
design process. The first persona will be the primary one—the main player
the team wants to design for. The second and third personas will be other
players the team wants to keep in mind and who the team thinks will enjoy
playing the game.

10 Alan Cooper, The Inmates Are Running the Asylum: Why Tech Products Drive Us Crazy and
How to Restore the Sanity. New York: Sams-Pearson Education, 2004.

Whether you create personas or not, these questions are really helpful in
understanding your players:

 Who is playing? This might be specific people, but it may also be a
particular community or culture or most any other grouping of
individuals.
 Where are they playing? Having a particular setting in mind is helpful,
particularly if designing for installation, arcade, or other known space
like a subway, a bus, at an event, and so on.
 When are they playing? Having a handle on a time period (such as
daytime or evening) is helpful, but more important is what else players
might be doing at that time—socializing, being alone at home, and so
on.
 What else do they play? Having a sense of what kinds of games the
ideal player engages with is helpful, too.
 What else do they like? Beyond games, what else does the player
enjoy? Camping, cooking, or knitting? Films, comics, or music?
Thinking about the other activities and mediums the player engages
with will help think more broadly about the game.

All of these considerations around what the team wants to do with the game
and the design motivations in making it take time to develop. Holding quick
brainstorming sessions to work through these questions can be really helpful

for generating ideas. Not only will it help focus everyone on each of these
questions, it will provide a structure for discussions so that everyone’s ideas
can be explored and captured.

Design Values Capture Motivations
Once the ideation process has generated motivations for the game, it is
helpful to try to capture these in an organized manner. Our favorite method
is design values, which we introduced in Chapter 6. Design values help give
structure by converting your motivations into actionable principles. Using
design values to guide the process while iterating through the creation of the
game is essential to keeping up momentum, focus, and clarity as the game
develops. In a collaboration, it also helps the team hold the same ideas in
their heads as they work on their parts of the game. In addition to being
guideposts, design values are like the scaffolding for the game. They guide
the shape of the game and make sure it doesn’t grow in unexpected
directions that take time and energy away from the core goals. It’s easy to
get sidetracked when designing a game. The overall process can follow a
long and winding path, and the last thing needed is to spend time working on
an aspect of the game that complicates or dilutes the vision. Design values
help the game keep shape and maintain a direction that is strong and clear.
Recapping from Chapter 6:

 Experience: What does the player do when playing? As our friend,
game designer, and educator Tracy Fullerton puts it, what does the
player get to do? And how does this make them feel physically and
emotionally?
 Theme: What is the game about? How does it present this to players?
What concepts, perspectives, or experiences might the player
encounter during play? How are these delivered? Through story?
Systems modeling? Metaphor?
 Point of view: What does the player see, hear, or feel? From what
cultural reference point? How are the game and the information within
it represented? Simple graphics? Stylized geometric shapes? Highly
detailed models?
 Challenge: What kind of challenges does the game present? Mental
challenge? Physical challenge? Or is it more a question of a
challenging perspective, subject, or theme?

 Decision-making: How and where do players make decisions? How
are decisions presented?
 Skill, strategy, chance, and uncertainty: What skills does the game ask
of the player? Is the development of strategy important to a fulfilling
play experience? Does chance factor into the game? From what
sources does uncertainty develop?
 Context: Who is the player? Where are they encountering the game?
How did they find out about it? When are they playing it? Why are
they playing it?
 Emotions: What emotions might the game create in players?

Remember, design values are guidelines—they’re not written in stone.
Sometimes, as a game’s design evolves, ideas can arise and values may shift
around them. Whether collaborating or working alone, it is important to
revisit design values. If things drift (and they probably will) ask yourself
why, and decide if you need to change the design values to accommodate
something discovered in the design process. But be careful. Often, we have
new ideas as we’re creating, and sometimes those ideas need to be set aside
and worked on later, in a new game. Being able to distinguish whether you
are drifting or moving forward is something that takes practice. A good rule
of thumb is to ask how shifting a design value will strengthen the player
experience of the game and what you want it to say.

Summary
The iterative game design process begins with an idea or maybe a lot of
ideas. The trick is turning those ideas into raw materials from which a game
can be created. The best way to begin this process is using brainstorm
techniques, including these:

 Idea speed-dating: A process by which individuals quickly pitch a
game idea to another person, who in turn pitches theirs. And from
there, the pair generates a new idea that combines elements from both
pitches. Once everyone in the group has pitched to everyone else,
everyone votes on the strongest ideas.
 “How might we...” questions: A process by which a group explores
questions to help them start designing their game. First, decide on a
question. Silently brainstorm around this question by writing

individual ideas on Post-it notes. After a set period of time, everyone
puts their Post-its on the wall and explains them to one another.
 Noun-verb-adjective brainstorm: A process for identifying the
“moving parts” of a game concept. Using three colors of index cards,
write down all the nouns, verbs, and adjectives you can think of
relating to your game concept. After a set period of time, everyone
shares their ideas with one another.

At most any stage in the conceptualizing phase, it is helpful to think about
the motivations for creating the game. There are six different considerations
to take into account here:

 Designing around the main thing the player gets to do
 Designing around constraints
 Designing around a story
 Designing around personal experience
 Abstracting the real world
 Designing around the player

It is helpful to convert the motivations for creating a game into a set of
design values, a subject covered in detail in Chapter 6.

Chapter 10. Prototyping Your Game

The second step in the iterative cycle is prototyping. Depending on where
you are in your design process, this might involve paper and markers, tennis
balls and spatulas, functioning code, even a playable version of your game.
The key idea with prototypes is giving form to your ideas.
Once you have a solid game concept, prototyping is the next step in the
iterative design cycle. Prototypes turn ideas and concepts into something
concrete that everyone on the team can evaluate. Prototypes do this by
making ideas, motivations, and design values into tangible forms that can be
played. This process of turning ideas into something material is where we
see if seemingly excellent ideas are in fact excellent. Prototyping often
flushes out issues and unintended or unexpected results—which is exactly
what should happen. That is the goal of the iterative approach, after all—
leveraging failure early in the process to put your design to the test to make
sure it is capturing the design values and goals for the game and providing
the intended play experience.

Figure 10.1 Prototyping is the second phase of the iterative cycle.

Prototyping often involves creating multiple prototypes to test how well they
function and how easy they are to use. The concept originates with industrial
design, where the focus is on the performance of an object. Take a vegetable
peeler as an example. Prototypes will explore how the handle fits in the
hand, how balanced it feels when in use, and how well it peels a variety of
vegetables. The designer would have ideas about how to make the perfect
peeler, which they put to the test in a series of prototypes that let them see
their ideas in action.
Prototyping games is similar, but also different in some important ways.
Instead of appearance, shape, or function, game designers focus on play
experiences. And these are driven by the actions players take both inside the
game (their character or interaction with the environment, objects, and other
players) and outside the game (the controller, the screen, and so on). So just
as the peeler is modeled and refined to feel right and make the task of
peeling vegetables easier, prototyping a game is trying to give form to the
game designer’s ideas about how the game feels to the player, the

experiences the game provides the player with, and how that makes the
player think and feel. That’s one of the main differences between game
design and many other forms of design. Instead of making something easier
to do, games emphasize fun, challenge, or mood over ease of use—which
sometimes means making things harder instead of easier.
This is one of the great things about games—they are about creating play. An
important thing to keep in mind: games can be a form of expression, too. Not
all games need to be “fun,” but they do need to create interesting choices for
the player and engage the player in an experience. To do this, we need to
prototype so that we can see if aspects of our game are indeed providing the
experience we imagined they would. Game designers heavily rely on a
process of prototyping and playtesting to actually see what they’re making.
So one of the main questions prototypes investigate is whether the game
provides the in-game experience and emotional and intellectual response the
team hopes to provide, whether that be an intuitive, fun, or challenging play
experience.

Prototypes Are Playable Questions
One of the important things to consider when setting out to make a prototype
is what ideas and goals need to be evaluated. One of the better ways to do
this is to pose questions about the aspects of a game’s design that need to be
answered. Is the primary activity enjoyable? Are players understanding the
game’s theme? Is the color palette working stylistically and functionally?
Prototyping should always be driven by questions like this so that you can
keep the game’s design moving forward. This is the transition from
conceptualization to prototyping—taking the goals and design values
generated during conceptualization, and creating prototypes that explore
open design questions that will be answered through playtesting.
Early in the process, getting from an idea to a prototype as fast as possible is
important to really see ideas in action. Later, it might take a good deal of
time to get from design revisions to a new prototype. The important thing is
to remain focused on the most efficient way to give form to the questions
about the game’s design.
As things proceed through the iterative design process, prototypes will
probably take multiple forms. Early on, prototype with paper or physical
objects like dice, index cards, or maybe existing code libraries and old
models and visual assets. The point here is to try out some of the main

actions and overall structure of the game to determine if there’s something
with potential to engage players. Some game concepts and approaches
require getting digital early in the process. Even then, structure and player
actions should be the focus. The old adage, “perfect is the enemy of done,”
applies to game design and perhaps should be refined to “polish is the enemy
of iterative game design,” at least in the early stages. There are a couple
reasons for this: the more time spent getting something just-so, the longer
you have to wait to see the answers to the questions embedded in the
prototype. Just as important is avoiding emotional investment in ideas early
on—the more time spent polishing, the more likely it is the ideas will start
feeling “good” and the harder it will be to think about them objectively. We
know this goes against almost everything taught about making things. But
trust us, the quicker a prototype is created, the sooner it can be tested, and
the sooner the game can be refined and made better.
Keeping the number of changes made to the game’s design to a minimum
while working on the prototype is important. Because changing a rule—or a
single variable—can generate all kinds of emergent phenomenon in the
game, it’s important to playtest before making too many significant changes
to the game. (Playtesting is covered in Chapter 11, “Playtesting Your
Game.”)
Remember to keep referring back to the design values while prototyping.
Design values may shift or change during the process, but be aware when
they might change, and be sure to discuss with the team and then integrate it
into your documentation—because the prototyping and internal playtesting
process might reveal a new design value.

Eight Kinds of Prototypes
Just like there are different motivations for creating a game, there are
different types of prototypes and goals behind them. When designing around
story, start with writing. If designing around the main actions of a game, start
trying to perform the actions physically, or write up some rough code to
figure out how it feels. In fact, there are so many ways to prototype and so
many forms to prototype in, it could be the subject of its own book. But
we’ll attempt to outline the primary ones in this chapter: paper, physical,
playable, art and sound, interface, code and technology, core game, and
complete game.

Paper Prototypes
Paper prototypes are the most abstract of prototypes. They aren’t necessarily
abstract in the sense of not representing things, but instead in the sense of
being very schematic and high level, representing the game in a simplified
form. If you are designing a videogame, paper prototypes can be a bit like
pretending to play a videogame with little paper cutouts—which is all they
need to be most of the time. Paper prototypes are often the first step in
giving form to a game concept. Sometimes they involve schematic drawings,
sometimes they are paper cutouts, and sometimes they use little pieces of
paper, tokens, and other small objects. The main goal of a paper prototype is
starting to see the game, even if it isn’t really playable.
A game that we are working on with a working title of Ping! is derived from
a moment we had playing ping pong in our office together and is an homage
to the classic game Pong, but with a strategic twist of adding different kinds
of paddles with different abilities. Early in the conceptualization process, we
realized we needed to home in on what the nouns (or objects), verbs (or
actions), and adjectives (or emotions) of our game would include. We started
with what we experienced in a regular game of ping pong and then added
some of the nouns, verbs, and adjectives we were thinking about for our
model of it. We then listed each one using color-coded index cards to help us
keep things organized. Once we had the cards, we reviewed them to see
which we wanted to keep and which we wanted to remove in our videogame.
We also took the opportunity to discuss some new nouns, verbs, and
adjectives that we thought we ought to include in our game. This exercise
made starting our paper prototype much easier, as we had strong lists of the
objects, playspace, and actions we wanted to try out. You might recognize
the noun-verb-adjective exercise from the previous chapter—it’s no
coincidence that it’s also a great way to identify elements to prototype on
paper.
We had questions we wanted to answer about our basic concept that would
be easier to answer through testing them with a paper prototype. Producing a
paper prototype was a great way to turn the abstract ideas we’d developed on
our noun, verb, and adjective cards into something more than ideas. Further,
it would allow us to ask and answer some basic questions about our game:
does the basic idea here make sense? What are the elements we need in the
game? How will they move and interact?

We used the simplest materials we could and didn’t worry about things
looking good. So we grabbed regular printer paper, some construction paper,
scissors, and a few magic markers to make a quick paper prototype (see
Figure 10.2). We created a series of paddles and balls for the game and then
used our fingers to move things around and imagine what the game would
feel like. The paper prototype also forced us to develop rough preliminary
interface sketches, which further advanced our understanding of the game,
including things like where the score would be placed, how scoring would
be calculated, and other important details we hadn’t considered up to that
point.

Figure 10.2 Creating a paper prototype.
As we worked on the paper prototype, we quickly iterated on ideas around
the size of the balls, the size of the paddles, possible ways to create a more
dynamic play experience for our players. Making this prototype helped us
think about how some of the paddles might look, how we show the paddle
that’s being used, and really basic stuff that we wouldn’t be able to think
through without a paper prototype, such as where the ball should come in.
We figured out that it should be either auto-served from the center with some
kind of angle on it or served from one or another of the paddles. The paper
prototype really helped us figure things out about screen layout and how

objects in the game might move. Sometimes that’s the main use for a paper
prototype.
As in the previous example, a paper prototype doesn’t need to look pretty. In
fact, in the beginning, when thinking through the basic play experience,
putting energy into what the game looks like isn’t always helpful. Just use
rough sketches. Again, the goal is getting something together quickly so the
ideas behind the game can be evaluated.
Different games will require different kinds of paper prototypes, so having a
basic toolkit of elementary school art supplies is the best bet: paper, magic
markers, scissors, glue, tape, rulers, some dice, and game tokens (see Figure
10.3). Paper prototypes are good for asking basic questions about your game.
What are the elements onscreen? What is the playspace? What objects do
players engage with? What actions do players perform during play? How
will the experience make players feel?

Figure 10.3 An array of prototyping materials.

Physical Prototypes
Physical prototypes are all about trying to capture the way the game actions
will play out. Instead of trying to represent what the game will look like
onscreen, as we did with our paper prototype, physical prototypes are
attempts to quickly iterate on how the game feels. Physical prototypes can
model the kinetic aspects of a game. They can also model how players
engage with the rules of the game, particularly when the game has a skill-
based challenge or challenge that involves moving spatially.
One of our favorite multiplayer arcade games, Killer Queen, by Josh
DeBonis and Nik Mikros, was designed first as a physical field game. We’ll
call the physical version Killer Queen Field Game (see Figure 10.4). It’s an
interesting example of a physical prototype because Killer Queen Field
Game is also its own exciting, standalone game. It was developed for the
Come Out and Play Festival1 in 2011, with the goal “to bring people
together to play and to have a good time.”2 That it did, with the field game
being played and shown at a wide array of game festivals in the United
States and abroad.

1 A game festival focused on outdoor games and games in the streets.
2 Indiecade East 2014, “Swords and Snails: The Killer Queen Story,” www.youtube.com/watch?

v=Fe6eUncuXFM.

Figure 10.4 Killer Queen and Killer Queen Field Game. Photo by
Lindsay Dill.

http://www.youtube.com/watch?v=Fe6eUncuXFM
http://www.youtube.com/watch?v=Fe6eUncuXFM

Killer Queen Field Game is played with 2 teams of 10 players. One player
on each team is the Queen, which is akin to the role of quarterback in
football. Other players are the Workers. They can run around and gather food
(represented by rubber balls). One way the team can win is by bringing that
food back to the base basket and filling it up. Or the team can use the food to
become soldiers, and then they can kill other players, including the Queen.
They can also win by killing the enemy Queen three times. The Workers can
move the snail, or its analog in the field game, the bomb. The third way to
win is to bring the snail home or push the bomb to the opponent’s base. All
of the rules and win conditions in Killer Queen Field Game are the same in
the videogame edition. The field version allowed Josh and Nik to develop
the rules and test and refine it based on how teams devised strategies. It also
gave them the opportunity to see how teams managed and coordinated
movement and physical skill—running from where balls were deposited on
the field to bring them back to the base, while avoiding killers with foam
swords. All of this physical prototyping and testing of the game at various
festivals led to a well-honed sport emphasizing deep strategy.
This was Josh and Nik’s third physical game together, in a set of games that
emphasized playful spectacle. After touring with Killer Queen Field Game,
they decided that lugging all of the game elements (foam swords, bats,
dozens of rubber balls) was becoming taxing. Because they already made
videogames professionally, they decided to try to develop the game into a
videogame so that it was more portable. The irony is that Killer Queen (the
videogame) turned out to be a huge arcade game, with a large enough
cabinet to accommodate 10 players. Most of the rules developed and tested
in the field game were translated to the videogame, with the addition of
actions inspired by the classic Williams Electronics arcade game Joust. Now,
rather than running on a field, teams flew or jumped from platform to
platform collecting food, moving the Snail (the Bomb in the field version) to
home base, or trying to parry with their sword and kill the Queen.
Killer Queen Field Game is an example of how physical games (and
prototypes) can be converted into videogames. Through iterations of the
game at different events, Josh and Nik developed a deeply strategic game
with the kind of spectacle their games were known for. Even if your physical
prototype is not as fully iterated on or developed as Killer Queen Field
Game, it can serve to illuminate player strategy, physical constraint, and
even the feel of the game and game physics and kinetics. Remember the

Journey example about sliding up and down the sand dunes? That could also
be considered a form of physical prototyping. It really depends on the kind
of play experience you are designing.

Playable Prototypes
The playable prototype is usually the first digital prototype and might even
form the base for the final game. Early playable prototypes are all about
trying to model the core game activity players will do. Remember, games are
about what players do, so this means focusing early digital prototypes on the
game’s actions. The key is to keep it rough and ugly here. Use simple shapes
and colors to represent elements in the game, and focus your time and
energy on the actual play experience. This early image of a prototype made
to model the multiplayer aspects for Journey is a great example (see Figure
10.5). It looks nothing like the completed game and is played from a
completely different camera perspective, but it helped the team find answers
to their questions about player interactivity in the game.

Figure 10.5 An early playable prototype for Journey.

As with most forms of prototyping, finding the fastest way to give form to
ideas is the goal with playable prototypes. Sometimes this means using
unexpected methods. Local No. 12, our company with Eric Zimmerman, is
working with programmer Peter Berry on a mobile word puzzle game called
Losswords. In it, players create and solve word puzzles. Early on, to see if
the basic actions and goals were enjoyable, we wanted to make a playable
digital version (see Figure 10.6). Instead of putting the time and energy into
coding a back end and interface, we decided to use Skype’s chat function to
make a low-fidelity playable prototype. One of us played the game logic,
while the others took turns creating and solving the word puzzles. To do this,
the game logic player sent each of us a text message in Skype with a passage
from a book. Our task, as players, was to find the words inside the words and
send back a version of the text with the words we found. The game logic
player then scored each of us based on a few criteria (number of words,
length, rarity) and told us the results. This was a simple test, and while it

didn’t have all of the elements of our final game design, it gave us a sense of
how the core game would play. Because Losswords is a text-based word
puzzle game, using Skype’s text chat functionality made sense as a way to
quickly find out if the game was engaging. This method allowed us to create
a playable version of the game after an hour or so of planning rather than
days and days of programming.

Figure 10.6 A playable prototype of Losswords created using Skype.
The key to the playable prototype is to keep your eye on your design values
and not forget what you are trying to embody in your prototype. When you
have a prototype you think works pretty well, check in on the design values.
How well does your playable prototype express those values? Keep working
on it until it does, or revise your design values if you find something in your
prototype that will improve the experience. As we said before, design values
are an important guide to the process, but when you are prototyping, you’re
going to discover some new, exciting elements for your game. The key is not
to get too carried away and have a discussion about whether editing your
design values will help you improve the overall play experience of your
game.
Early playable prototypes make real the design ideas about the actions the
players carry out in the game. This type of prototype is really important
because if the actions the players are doing over and over aren’t fun, the
game won’t be fun. Most games go through a dozen or more playable
prototypes in the process of developing and refining the main actions,
objects, and playspaces of the game.

Art and Sound Prototypes
Another form of prototyping is art and sound prototypes. The playable
prototype may not have final sound or art, using simple placeholders.
However, art and sound prototypes can be developed in tandem to explore
ideas around the visuals and the sounds of the game. These are more like
traditional art direction approaches found in graphic design, application
development, and animation. Art prototypes focus on things like the color
palette, the typography, the illustration or modeling style—all the things that
fit under the “look and feel” of a game. Often, one member of the team is
working on the playable prototype while other team members are working
on art prototypes.
For Tale of Tales’ atmospheric game The Path (see Figure 10.7), Auriea
Harvey and Michaël Samyn started with the theme and a feeling for the
sound and art before developing the actual gameplay. They began with the
theme of Little Red Riding Hood filtered through a horror lens. The music of
Kris Force and Jarboe provided inspiration as well—beginning with the
atmospheric effects of their music on other projects, and ending with a
soundtrack they made specifically for The Path. The feeling of the music,
the theme, and the design of the six sisters in the game provided inspiration
and guided the entire design process. As Auriea explains,

When we had to decide which character to make first, I said it
immediately, “Ruby is the one!” Through working out her character
and style we solidified what all the characters would be.... Before
her, we had no idea what we were making. Ruby helped us figure all
of it out.3

3 Auriea Harvey, “The Making of Ruby” from The Path development blog, http://tale-of-
tales.com/ThePath/blog/2008/10/03/the-making-of-ruby/.

http://tale-of-tales.com/ThePath/blog/2008/10/03/the-making-of-ruby/
http://tale-of-tales.com/ThePath/blog/2008/10/03/the-making-of-ruby/

Figure 10.7 The Path.
Early on, an art prototype may be no more than moodboards—a collection of
images taken from comics, film, art and photographs that serve as reference
points to what the team wants the game to look like. The development of the
characters in The Path is a great example of this. The development of Ruby
involved plenty of sketching and visual research (see Figure 10.8)—looking
to film and other media as inspiration. Later, an art prototype may include
some animation and even some interactivity so that you can see how the
visual style will feel in play.

Figure 10.8 Art prototypes for The Path.
Like the art prototype, a sound prototype might simply be existing music or
sound effects that are put together like a moodboard to help the team decide
on the tone of the music and sound. Sound and music deeply affect the mood
of the game, so it’s important to consider them as part of the early stage of
game design rather than an afterthought. For The Path, the music of Kris
Force and Jarboe served as constant inspiration, and ultimately, they became
collaborators on the game, composing an original score. As the sound
elements are defined, trying out different soundtracks and sound effects can
greatly change the play experience. Sound brings a game to life, so
integrating it into playable prototypes can really change the response from
playtesters.

Interface Prototypes
Interface prototypes address the way the player interacts with the game. Is
there a heads-up display? Is there a custom controller or an unusual use of a
traditional controller? Interface prototypes explore ideas relating to how a
player directly engages with the game.
With our game Losswords, the interface is the game (see Figure 10.9). By
that, we mean that all of the actions in the game are represented by directly
manipulating elements onscreen. The gameplay involves two modes. One
mode is finding words inside words and selecting them so that they will drop

out of the text and become fragments, generating a fragmented word puzzle
for a friend to solve. The second game mode involves solving these puzzles
by putting the word fragments back into the right places, trying to score high
enough so that you can capture the book for your library. As Peter was
writing basic game logic, we had plenty to prototype in terms of the screen
layouts, how players would navigate to new puzzles, and how the word
selection and movement of word fragments would work. Early on, we
developed schematics for each screen to develop the player experience and
logic of the game before beginning to build anything. We had interface
schematics, screen by screen in image-editing software, and we used
presentation software to replicate how players would move through the
game’s screens. These interface prototypes also served as the scaffolding for
the art developed for the game.

Figure 10.9 An interface prototype of Losswords in the form of
schematics.

Note that interface prototypes don’t necessarily involve coding anything.
They can be created simply by using image-editing software or presentation
software to figure out the interface components and how they work. Also

note that the game schematics—described in Chapter 7, “Game Design
Documentation,” might line up with, or be the same document as, the
interface prototype, as it did with our Losswords example.

Code/Tech Prototypes
As you move through early prototyping by considering the gameplay, art,
sound, and interface, you might also need to begin testing technologies and
beginning to write code. Once you have developed the playable prototype,
you will also want to consider technologies for the larger game. Maybe you
want to see how the basic code performs on a couple of machines, for
example. Or perhaps you want to check the input/output to a server. This sort
of prototype is a code prototype. Code prototypes are likely to be internal
prototypes as well, to work out infrastructure necessary for more complete
tests of your game.
For the game Perfect Woman, Peter Lu and Lea Schönfelder started off
building the core technical aspect of the game: using the Kinect to capture
player body positions and match them to the onscreen character (see Figure
10.10). Peter had worked on a Kinect-based game before, Cosmicat
Crunchies, so he had a pretty good idea of the Kinect’s capabilities. His
experience of trial and error trying to push the Kinect’s facial recognition
capabilities showed him the limits of the technology but also what it was
good at. Many technical prototypes expose the strengths and weaknesses of
the technology and help inform the game’s design through the constraints of
what that technology is able to do. For Perfect Woman, Peter wrote the code
and Lea developed the art and narrative. Within just a few days, they had a
working prototype of the gameplay, with the Kinect registering body
position and transcribing that to a 2D model of one of the in-game
characters. While many technical and code prototypes don’t use final art,
Perfect Woman did simply because Lea had already developed it, and it was
easy enough for Peter to drop it in. The technical prototype didn’t include all
of the scenes or any of the actual game logic, but it did include the core
gameplay of matching poses to body position. Connecting the Kinect to
Unity and getting this core action to work was the main task at this point.
Another aspect of these first few days in the development process was to
tweak the code so that the mapping of the movements between the player
and onscreen character were smooth, avoiding too much lag between the
player and character movement.

Figure 10.10 A tech prototype for Perfect Woman.

From the Perfect Woman example, we can see that there are two primary
functions for a technical or code prototype. One is to see if the core actions
or aspects of the game are possible given the constraints of the technology.
This involved Peter implementing and testing a Unity library for the Kinect
and trying it out. Because he already had some experience with the Kinect in
his earlier work, this aspect of the prototyping process went fairly quickly.
The second function for a technical/code prototype is to develop the core
gameplay, changing the code to arrive at the right feel for the interaction.
Peter did this by changing the smoothing and speed with which the in-screen
character reacted to Kinect input to address the quality of lag between them
(since the lag was impossible to completely get rid of, based on the nature of
the Kinect technology).
Technical and code prototypes can also help home in on the best game
engine to use or on the right input devices or physical elements (if any) for
the game. In some cases, the game might use a piece of technology that is
new or unfamiliar. In this case, trying it out early on to get a good sense of
whether it will be appropriate to the game is key. New technologies, such as

the release of the Kinect 1.5 for Perfect Woman, can be hyped beyond what
they are actually capable of. Testing them to see what their capabilities and
constraints are will inform the gameplay—digital game design being a
constant dance between what’s possible with the technology and what’s in
the designer’s imagination.

Core Game Prototypes
Once things start coming together around the playable prototype, it is time to
move toward a core game prototype: a prototype that includes the core game
experience.4 It is different from the playable prototypes in that it isn’t just
focused on one or two aspects of the game: it brings all the core parts
together to see how the whole feels and plays. At this stage, adding some
basic art and sound design can be helpful to identify how they will be
integrated into the experience. Also, it’s time to include rough placeholders
for some of the game content, writing, and any intro sequences or tutorial
elements.

4 Some developers use the term “alpha” instead of “core game prototype.” We stay away from this
language due to its origin in software development and because it relates more to production
than design.

This also means you will want to create additional core game prototypes
once your team has worked through the feedback from your playtesters. As
with everything else, you want to remember the role of prototyping: giving
form to your ideas and asking the right questions so that you can test them
via playtesting (which we discuss in further detail in Chapter 11,
“Playtesting Your Game”). Determining the right prototypes to keep your
game advancing toward a complete design is important. This often means
creating additional playable, art, and code prototypes that will inform the
core game prototype. Work smartly and efficiently. That’s the goal with a
play-based game design process.
In Jane Friedhoff’s Slam City Oracles (see Figure 10.11), Jane was trying to
create the feeling of sensory overload she experienced playing games like
Vlambeer’s Luftrausers, but also in riot grrrl moshpits. She quickly came up
with some ideas involving two players bouncing around in an environment
filled with objects. Instead of worrying about what it would look or sound
like or even what the goals might be, Jane decided to create a prototype of
the core action of the game. She created a core game prototype that
represented the player characters as circles and the objects in the world

represented by squares. There were no game goals, just the basic player
abilities to smash around and the physics to create the bedlam of the two
characters smashing around into objects. Because the basic pleasure of
bouncing around and smashing into things was the core play experience, that
was all Jane needed to really get a sense of whether her game was providing
the play experience she intended.

Figure 10.11 An early prototype of Slam City Oracles.

Complete Game Prototypes
After a couple of rounds of core game prototypes and playtests, you are
likely ready to move onto a complete game prototype. A complete game
prototype includes all aspects of your game: menus, start screens, all the
actions and objects in place, and the game able to be played through from
start to finish. With the other kinds of prototypes, we emphasize making
quick prototypes that aren’t perfectly built. With complete game prototypes,
work fast and remember that it doesn’t need to be perfect until the
production phase (discussed in Chapter 13, “Moving from Design to
Production”). That said, paying attention to how things come together with
more of an eye toward the final build of the game helps.
Kevin Cancienne’s Dog Park (see Figure 10.12) is a great example. In this
four-person local multiplayer game, players perform as dogs, running,
cavorting, barking, jumping, and wrestling, each trying to have the most fun.
Fun is measured by how many different moves and combos players perform,
such as jumping over other dogs. Kevin worked on a complete game
prototype for the months leading up to its premiere at NYU Game Center’s
2014 No Quarter exhibition. The exhibition gave Kevin an excellent
opportunity to see how players responded to the full game in a context
conducive to local multiplayer games. Given that players would encounter
and play the game without instruction, it was important for Kevin to make
the game as complete as possible. But he also knew this was just a prototype,
so he did not worry about writing elegant code or super-rigorous bugtesting
(even though he did a lot of bugtesting). The goal was to see the full game
design realized and played so that he could assess the overall state of the
game, his goals for it, and players’ reaction to it.

Figure 10.12 A complete game prototype of Dog Park.

Documenting Your Prototypes
When creating prototypes, you want to capture the questions and ideas you
are exploring through each. For each prototype, you want to have a clear
reason for why you are creating it. You want to make sure to document the
questions your prototype is exploring. You also want to record what you are
doing to answer those questions. This may be written, or it might just be
photo or video documentation. And you need to make sure you capture how
you did it, so you can re-create the prototype if you need to. This form of
documentation might be written, or it might be photos or videos. It really
depends on what you are doing.
This is where the documentation introduced in Chapter 7 comes into play.
Prototype notes and versions should be kept somewhere everyone can get to
them, and issues that come up and need to be discussed must be captured in
the tracking spreadsheet under “for discussion.” Once it’s been discussed,
any changes to the design should be captured in the design document.
Remember where you put your design values and recorded your ideas about
the game? You want to document the ideas you haven’t yet put into your
prototype so that you have a to-do list for things to consider adding to the
prototype. This is especially important when you’re working in teams—to

have one central document containing all of the design decisions you’ve
made. Ultimately, it’s the growing, live document of your iterative process.
In addition to the design document, the game schematics will embody many
of your prototyping questions. In fact, in interface-heavy games, the
schematic might be the interface prototype. Finally, you will want to keep
track of all the to-do’s that come up throughout the prototyping process. This
is also where the tracking spreadsheet comes into play, in keeping up with
the goals and tasks for producing the prototype. We really like to use a
combination of the prototype, our design document, the schematic, and a
task list to identify the kinds of tasks—or to-do items—involved in making
our next prototype.
There is so much going on during the prototyping process that it is easy to
lose track of what you’ve done, why you did it, and what you should do
next. To help keep up with all this, documentation is super important. This
doesn’t necessarily mean writing lengthy design documents or creating
super-detailed schematics, but it does mean being careful and meticulous to
capture the why, what, and how of your prototypes.

Summary
Prototypes come in all kinds of forms, from physical, to paper, to digital, and
hybrids in-between. Each prototype is trying to make tangible an aspect of
your design concept, whether it be the way something moves, the way it
looks, or the way it feels.
Prototyping shows us what our game will look and sound like and helps us
figure out how it will be built. Prototypes can start quite simply, with very
little or no technology; examples are paper prototypes, physical prototypes,
art prototypes, and even interface prototypes. The first digital prototype is
called a playable prototype, although one might start with a code/tech
prototype to test out technology. Core game prototypes and complete game
prototypes are developed as the game assets are created and after playtesting
the first playable prototype.

 Paper prototypes: These are great early-stage means for making ideas
concrete. Paper prototypes use paper to represent onscreen elements in
a game. They help think through what needs to be onscreen and how
the various objects interact within the playspace. Most importantly,
they define what the player’s role is in the game.

 Physical prototypes: These are helpful tools for working through how
a game feels to play. Physical prototypes involve enacting aspects of
the play experience in real life to help think through the play
experience.
 Playable prototypes: These are functional, playable prototypes that
allow players to experience the main actions in the game. These tend
to be rough, often not including graphics, sound, or even goals. The
point of playable prototypes is to investigate the core actions players
perform in the game.
 Art and sound prototypes: These prototypes shift attention to the
sensory elements of a game. The focus is on exploring the visual and
aural style, and sometimes, the production processes for creating these.
 Interface prototypes: These explore the ways the player interacts with
the game. This can include screen-based information and player action
feedback systems, but also the actual mechanism by which the game is
controlled.
 Code/tech prototypes: These prototypes explore technical aspects of
the game, like whether or not it will play smoothly on certain kinds of
devices or computers and whether or not the pipeline for integrating
assets is working well. It can also help understand technologies that are
new to the team, like special controllers or input devices.
 Core game prototypes: These allow the investigation of the core play
experience. They move beyond the rougher playable prototype by
including the full set of actions available to players, integration of
goals and win and lose states, and other important aspects of the game.
It is also wise to include basic art and sound in a core game prototype
so that their impact on the play experience can be evaluated.
 Complete game prototypes: These are prototypes that embody the full
play experience of the game. As such, they are the best way to fully
evaluate the game’s design.

Ultimately, you are giving form to your ideas and making something
playable. However, how do you know if it’s the right form and if it’s fun?
Well, our prototype is a playable question, and as we’ll see in the next
chapter, the playtest is the answer.

Chapter 11. Playtesting Your Game

The playtesting moment in the iterative cycle is where you find out the truth
about your game’s design. It’s when the questions posed in the prototype are
answered, often in ways that are unexpected. Just like there are many types
of prototypes, there are many types of playtests, each based on getting your
game closer to what you are hoping it will express.
If prototypes ask questions, then playtests provide the answers. Sometimes
the team members ask and answer the question themselves. Sometimes
playtesters from outside the team provide the answers. Sometimes playtests
are super short, but other times they unfold over days, weeks, even months.
It all depends on what questions are being asked through the prototype and
what kinds of answers the team is seeking.

Figure 11.1 Playtesting is the third phase of the iterative cycle.

Playtesting lets us see what’s working and what’s not. Each time through the
iterative cycle, different questions are posed by the prototype, and different
answers are collected through playtesting. Early on, we’re seeing if our
game will even run, if the components work together and the dynamics
between them are in balance. Sometimes playtests let the team see whether
the design values guiding the game’s design are embodied in the play
experience. Later-stage playtests might focus on how easy or hard it is for
players to understand how to play the game and gauge their progress, or they
might test technical aspects of the game.
Often, particularly early in the iterative game design process, that answer
isn’t always what’s expected. In fact, that’s why playtesting is such an
important step. Playtesting can reveal cracks in the design that players can
exploit to their own advantage, aspects that are unclear or easy to
misinterpret, parts that are too easy or too difficult, and a wide array of
emotions different from those hoped for. Games can generate many different
kinds of emotions and responses from players—often more than the
designers imagined and more than is the scope of this book. For more on
this, we would recommend Katherine Isbister’s book How Games Move Us:
Emotion by Design. It is a look into how games influence emotion, from the
perspective of science and human psychology. It shows the depth of
experiences games can evoke and how different games do this. Playtesting
provides us with a method to witness and document these different responses
—all answers to the questions our prototypes pose.

Six Kinds of Playtests
In the same way there are a lot of ways to prototype a game’s design, so
there are a lot of different kinds of playtests to run for those prototypes.
There are six kinds of playtests that we use in the game design process:
internal tests, game developer tests, friend tests, target audience tests, new
player tests, and experienced player tests.

Internal Playtests
The first kinds of playtests are internal playtests. In other words, playtest it
yourself or with your team. Internal testing takes two forms: for quick loops
and reviews with the team, and then as a way to make sure the prototype is
ready for playtesting with people outside the team.

As a designer, anytime a question arises about the game’s design, a playtest
should help find a suitable answer. Even with prototypes investigating
aspects of the art, sound, code, or interface, there is still room for
playtesting. Internal playtesting begins before we might even think of it as
playtesting; every time code is tested during prototyping, that is an internal
playtest.
Another form of internal testing happens with core and complete prototypes.
Making sure the prototype functions well before asking others to spend time
playtesting is important. This often catches bugs and basic gameplay
problems without having to involve people outside the team. Just as
important, internal playtests of playable prototypes provide the opportunity
to review the game design as captured and investigated in that prototype.
With Ping!, our ping pong meets Pong game project, we did a lot of internal
playtesting among the team (see Figure 11.2). Before we even got to our first
coded prototype, when we were working on the paper prototype for Ping!,
we were doing internal tests as we moved the paper elements around and
making quick iterative loops as we went. This is one form of internal testing.

Figure 11.2 Internal playtesting of a paper prototype.

We also did a lot of this kind of playtesting with Ping!’s physical
components—how to angle the projector and how projection looked on
different materials, trying out the feel of different controllers and tweaking

the code to get just the right kind of physics in the game. During our code
prototypes and again in early playable prototypes, we created a series of
custom controllers for the game to see which had the right combination of
intuitiveness and the retro aesthetics we desired for the game. We first tested
these separate from the game, taking turns manipulating the slides and
knobs, and then again attached to a playable prototype.
Our internal playtesting continued with more detailed aspects of the playable
prototype (see Figure 11.3). For instance, we tested and tweaked the speed of
the paddles and the ball. Once we liked where we had those, we began to
iterate around paddle abilities, like making it grow or shrink when you
scored. As we played around and playtested, we finally ended up with an
interesting option: one that actually made your paddle shrink or degrade
when you hit the ball and grow when you scored against your opponent. This
felt like something that could actually happen in the world of the game—the
player starts with a nice big paddle, but it gets smaller (in effect, weaker)
every time the player hits the ball. It added an interesting level of challenge
to the gameplay. This idea later came into our first playable prototype in the
form of interactions between materials. We used the different physical
aspects of the ball to affect the paddle, and depending on the combination
between the two, one or the other would shrink or grow.

Figure 11.3 Playtesting an early playable prototype.
We did all of this playtesting in a day—often tweaking some variables and
changing the code and playtesting right after. We sometimes call this “live
coding”1—manipulating the game through the code and seeing right away
how it changes the dynamics of play. One piece of advice about this kind of
rapid iteration: don’t change too much at once. Instead, change only one
thing at a time so you can get a better sense of how that change impacts the
overall game. Sometimes the line between prototyping and playtesting can
blur, as you can imagine from these examples. But the key with internal
playtests is that the entire team takes time to play and share feedback on the
game—even if it’s happening live and in the moment.

1 Live coding usually involves some kind of performance. It originated around computer music
communities in the early 2000s. Our version is more oriented around rapidly prototyping and
playtesting within the team to quickly home in on aspects of gameplay.

Game Developer Playtests
The next kind of playtest is with fellow game developers: people who
understand the game design process. This type of playtest can happen at
most any stage in the game design process, whether the prototype explores
ideas or play. We think this is one of the best ways to get targeted feedback
and to generate ideas around problems. Of course, game developers tend to
be quite opinionated about games and can often give feedback about the
version of the game they would make instead of the version there in front of
them. Keeping in mind the design values for the game is really important
when taking developer feedback on playtests, as they help the team stay
aligned with its goals and to filter through the constructive feedback for the
game’s design. You may even want to share your design values with your
game developer testers so they know the principles guiding your design.
Game developers are great playtesters early on in the process because they
have a trove of knowledge about games and can provide very detailed
feedback. Maybe the team wants feedback on how one aspect of the game is
coming together, in which case it is useful to bring in colleagues for a
playable prototype. Or maybe the team wants feedback on how the visual
design is working out, so running a playtest with some art director or graphic
designer friends will benefit the game. Some coding challenges? Maybe a
coder friend comes by to playtest a code prototype.
Early in the game design process for Ping!, we playtested an early playable
prototype with our game designer friends Anthony and Naomi (see Figure
11.4). (In fact, Anthony loved the game so much, he joined the development
team!) From this playtest we learned some important things about game feel
and gameplay, and even more importantly, we learned of some new
references and precedents for our game, including Bennett Foddy’s FLOP, a
floppy version of Pong hidden in the PlayStation game Sportsfriends that we
found really informative.

Figure 11.4 Playtesting with our game developer friends Anthony and
Naomi.

Game developer playtests are great gut checks on the game and how well it
is coming together to meet the agreed-upon design values. But be sure to
take game developers’ feedback with a grain of...well, design values.
Sometimes designers give feedback that is very solution oriented rather than
simply reporting on their experience. They might suggest making certain
changes to the game that pull it away from the kind of experience you are
trying to generate. So do keep the design values in mind when considering
feedback from other game designers.

Friend and Family Playtests
Another form of playtest is with friends and family—people with whom the
team is comfortable sharing an in-progress game. Friend playtests can
happen at most any stage. They are great for seeing how others respond to
aspects of your game. But beware those friendly faces and kind words....
Your friends and family want you to succeed, so they likely will have only
positive things to say about your game. With friend playtests, what people do
or express is often more important than what they say, so pay close attention
to what they are doing in the game, where they seem to be having the most
fun, and where they seem to be having problems. And watch their facial
expressions—these are often more honest and useful than what they will
have to say.
With Local No. 12’s cardgame The Metagame (see Figure 11.5), we ran a
fairly early playtest with a close friend’s family to see how people outside
our game design communities responded to the game. We wanted the game
to appeal to a wide range of players, so we thought a family gathering would
make sense. We had people from 13 to 70 years old playing together, giving
us a perfect range of ages for our pop culture–focused game. We were
interested in seeing how people at the younger and older ends of the group
reacted when they encountered things they didn’t know. By playing with the
family of a close friend, we were able to have just the right distance from the
players to assess the game’s content.

Figure 11.5 The Metagame.

Target Audience Playtests
Once the game’s design has progressed to core game and complete game
prototypes, it’s time to bring in a wider range of playtesters. It can be helpful
at this stage to find people who don’t know anything about the game or have
limited familiarity with it, and most importantly, are in the target audience
for the game. People who enjoy the type of play experience the game
provides will help you see if the game’s design is creating the intended play
experience.
Chris Hecker’s two-player Spy Party is a great example. Early in his design
process, Chris began to seek out “early adopters” for the game. He would get
a booth at game conventions, and he created a community website. This
attracted players interested in the game, allowing Chris to develop a group of
players with whom he could playtest his prototypes. Because the audience
was eager to play the game, Chris was able to get lots of invaluable feedback
on the game’s design from fairly early in the process, not so long after he
had a first playable prototype. This also gave Chris an excellent gut check

for design decisions—if his target audience playtesters enjoyed new features,
art, and other aspects, then Chris knew he was heading in the right direction.
And if they did not respond well, he was able to learn this early on and to
work to find new solutions.

New Player Playtests
New player playtests are those that involve people new to the game. They
are best for core game and complete game playtests to help see how new
players will learn and enjoy the game. It is important to run between five and
seven of these to try to see the full range of responses players will have. Less
than five, and you might not get enough variation, and more than seven, and
you are spending too much time on these tests. Keep in mind that a player is
only a new player once, which means finding new people to playtest is an
ongoing task.
Playtesting with new players will often shed light on the game that can be
exploited in unexpected ways to a player’s advantage. As Kevin Cancienne
was showing a prototype of his four-player game Dog Park (see Figure 11.6)
at IndieCade, an independent game developer’s conference, one player found
an exploit in the rules: that barking incessantly would always win in terms of
accumulating fun points over any other activity. Kevin and his friend
decided to try to stop the barking player from barking, making their dog
characters go over and wrestle the barking dog to submission. They
proceeded to run and chase each other all over the dog park. As they were
doing this, Kevin had the sudden realization that what they were all doing in
the game was exactly what dogs would actually do in real life—the game
encourages the exact thing that Kevin was hoping for—giving people a
chance to play like dogs. So instead of overcorrecting the exploit by
completely removing barking from the game, he simply calibrated the
number of points barking would give players. So barking is still a powerful
strategy, but it can be overcome by the kinds of things dogs do to another
dog whose behavior is annoying—chasing them, and wrestling them.

Figure 11.6 Dog Park being playtested. Photo by Daniel Latorre.

Experienced Player Playtests
Experienced player playtests are those where playtesters play a prototype
over a longer period of time. Because of the nature of this sort of playtest, it
is necessary to give experienced players some time—maybe a few days,
maybe a week, maybe a few weeks. It will vary from game to game. Longer-
term playtests like these are great for helping really see how the game design
translates into play experiences. This kind of longer-term playtest can also
show how changes in the game have impacted the experience since these
playtesters will likely be around through various stages of the game’s
development. Playtesting with experienced players can begin at the point
there is a playable prototype, and to be effectively “experienced,” should
continue through to complete game prototypes because these playtesters
need to be able to give feedback on the whole experience. For longer-term
playtests, it’s a good idea to set up regular emails (to prompt players to
check in), website-based forms, or multiple in-person sessions if the game is
multiplayer.
Chris Hecker’s work to develop a pool of target audience playtesters for Spy
Party also allowed him to develop a group of experienced playtesters. This
allowed him to focus on the core game and see what happened when players

devoted time and energy to developing skills and strategy around the game.
This sort of information is invaluable for games that emphasize player skill
and goal-oriented play, but also for experiential games.

Matching Prototypes to Playtests
There are many different kinds of playtests—and playtesters—to use at
every loop through the iterative cycle. Each one will provide different
answers to the question that the prototype asks, based on their experiences,
their relationship to you and the design team, and the kind of prototype they
are testing. In fact, certain prototypes work best with certain playtesters.
Different prototypes lend themselves to different kinds of playtests (see
Figure 11.7). This is because different kinds of playtests are better at
evaluating different things:

 Paper prototypes are best suited for internal and game developer
playtests.
 The same goes for physical and code prototypes.
 Art and playable prototypes might open up to also include friends and
family.
 Core game prototypes can open up a bit more to include target
audience playtesters.
 Complete game prototypes are the most open, involving all types of
playtesters.
 Finally, experienced playtesters can be matched with almost any kind
of prototype and might be playtesters from the beginning. How else
will they become experienced?

Figure 11.7 Matching prototypes to playtests.

Preparing for a Playtest
There is a lot more to running a playtest than just grabbing a couple of
friends and letting them play the game (though that does work sometimes).
Eric Zimmerman and his collaborator, the architect Nathalie Pozzi, talk
about playtesting for their gallery games being both demanding and cruel.2
As Nathalie puts it, playtesting, particularly for early prototypes, is asking
people to try out something its creators know is broken or incomplete. Eric
describes early playtests like a dinner party where some of the food may be
unappetizing or completely uncooked. Playtests ask a lot of everyone—most
importantly the playtesters. To make the most of playtesting, make sure the
prototype is ready and the team is prepared to capture the answers that come
out of the playtest.

2 We interviewed Nathalie and Eric about their prototyping experience as part of our video series,
Iterate: Design and Failure. http://www.designandfailure.com/nathalie-pozzi-and-eric-
zimmerman/. 2015.

Picking a Time and Place
The basics of preparing for a playtest are picking a time and date, a location,
and of course, playtesters. Setting a time and place that will accommodate
playtesters but also provide the atmosphere conducive to evaluating the
prototype isn’t trivial. For example, while a loud cafe or bar may seem ideal,
it will quickly undermine the playtest if the game requires focus and
undivided attention.

Planning the Playtest
Something that will help focus playtesters’ comments is a playtest plan—
knowing how to introduce the game, what playtesters need to know to
understand the current state of the game, and whatever info they need to
know to play are all things to sort out ahead of time.
This means the team should meet before the playtest to identify what,
exactly, everyone wants to learn from the playtest. A good place to start is
revisiting the questions that led to creating the prototype in the first place.
With Ping!, once we had our first playable prototype, we had a few
questions we wanted to answer:

 How easy is it for players to manipulate the paddles?
 How long are they able to volley?

http://www.designandfailure.com/nathalie-pozzi-and-eric-zimmerman/
http://www.designandfailure.com/nathalie-pozzi-and-eric-zimmerman/

 Are certain materials and settings more fun than others?
These are the kinds of questions that we just couldn’t answer ourselves. We
had been playing the prototypes all along and had lost the feel for how easy
or difficult the game was. This is a common occurrence when developing a
game. You need others to test it to keep the difficulty within reason and
game interactions clear to new players.

Capturing Feedback
Just as important is having a plan for capturing the feedback. Will team
members observe the players or even play along with them? Will sessions be
videotaped for later review? Will screengrabs or video be captured if it is a
screen-based prototype? Who will observe and take notes?
Much of what happens during playtests is nonverbal—a laugh, comments
during gameplay, white knuckles during a particularly difficult challenge,
bored glances at a cellphone. All these are important clues in the playtest and
where videotaping can be quite helpful.

Running a Playtest
Once a prototype is ready to go, it’s time to playtest. This is often a pretty
surprising, and sometimes a pretty traumatic, experience. But it’s also one
that game designers become used to after a while. One of the most difficult
things to do in a playtest is to sit back and pay attention to the playtest itself
—and not try to intervene too much. It’s so hard to watch players fail to
understand something in the game that seems obvious. In essence, it’s
painful to watch them fail. This is exactly what we’re looking for—points in
the game where things are unclear, too difficult, or just downright broken. To
keep playtests smooth and focused, we’ve identified four things you should
always do in a playtest: introduce, observe, listen, and discuss.

Introduce
First off, you should introduce playtesters to what they are about to
experience. Tell them more about the state of the prototype. Make sure they
understand where the project’s focus is right now. For example, if the art
isn’t final or the win condition isn’t implemented, let playtesters know. This
helps them understand better what they are playing and what they should
comment upon.

Observe
The second is observe. When we observe the playtest, we’re looking for all
kinds of things—body language, what players are actually doing onscreen,
what they say when they are playing, how much they want to play, and in the
case of our game, what players say to each other.
And here’s where we need to emphasize something. Observing doesn’t mean
talking, helping, or coaching. Keep interactions with playtesters to a
minimum. In fact, try not to interact at all when they are playing—even
when they are struggling. This is easier said than done. It’s hard seeing
playtesters fail because something in the game is unclear or play the game in
a way that is totally unintended. Sometimes those surprises can be great to
see—players helping strengthen the game’s design. And sometimes it is
horrible, with the natural instinct being speaking up and intervening. Resist
this impulse, as it defeats the purpose of playtesting. The goal of playtesting
is watching to find just these kinds of failures and not to stop them from
happening. So fight the impulse, keep quiet, and just write down what the
playtesters are doing and what is and is not working.

Listen
The third thing to do is listen. This is different from observing. When we
listen, we might be listening to our players talk aloud as they play. A good
thing to do to understand what is going on in the player’s head is to ask them
to actually say out loud what they are doing. A player can tell us why they
are making certain choices, how the game is making them feel, or if there’s
anything they are unsure about.

Discuss
The final thing to do during a playtest is to discuss. Make sure when
scheduling the playtest to leave time to discuss the game with your
playtesters. In the discussion, the kinds of questions to ask are not “yes/no,”
or leading questions like “did the game feel fun?” Ask open questions like,
“How did playing the game make you feel?” or use open prompts like, “Tell
me how you figured out the game’s goal.” The goal here is looking for the
playtester’s reactions to the game, not feeding them yours.
For certain playtests, in particular with target audience playtesters, have a
discussion before or after the playtest about the playtesters’ own game

preferences, who they are, and any other questions you might have to help
you understand their point of view as they play your game.
So that’s it. Introduce, observe, listen, and discuss. Those are the four steps
for running a playtest.

After a Playtest
There is so much going on during the playtesting process that it is easy to
lose track of what you’ve done, why you did it, and what you should do
next. Playtesting is the most critical part of the iterative game design process
because it is the time when you gain deeper insight into the ideas explored
during conceptualization and answers to the questions posed in your
prototype. To help keep up with all this and to get the most out of each test,
documentation is important. In the previous chapter we went over the why,
what, and how of documentation of prototypes; now it’s time to focus on the
who, when, where, and feedback of our playtests.
Who was playing? Make sure to record the playtesters’ names and a way to
contact them in case additional questions come up. When and where are
important to note because they provide pertinent information on the context
within which the game was playtested. Feedback is the most essential thing
to document. This is why we playtest in the first place: to see what
playtesters do and think about the game. To make the most of playtesters’
time and efforts, pay careful attention to their experience.
We capture the most basic info like when we tested, who the playtesters
were, which prototype we were testing, and who is taking the notes.

 Gameplay: This is where we collect notes relating to the play itself.
Did the players enjoy themselves? Were they having problems? What
worked? What didn’t?
 Visuals and audio: These are notes on the presentation layer of the
game. Were there reactions to sound? To any of the visual elements of
the game?
 Bugs: Were there any bugs that popped up during the playtest? Making
careful note of what happened and what the playtester was doing that
caused the bug is important for being able to go back and fix the bug.
 Comments: If playtesters say things that are revealing about their
experience, try to write these down along with a note about what
triggered the comment.

 Observations: Sometimes playtesters give feedback without saying a
word—the furrow of a brow, a smile, or a laugh while they play.
Playtesters also give feedback through their play. Watching what is
happening onscreen, or if it is a nondigital game, what happens on the
board or in their hand of cards, is also revealing.
 Ideas: Any ideas that come to mind during the test should be written
down to avoid forgetting them. These are ideas about what to add, how
to fix issues, and ways to enhance and improve. Catch them all.

In addition to written notes, consider taking pictures and video of the
playtest using screen capture software for recording the play sessions. The
team can then go back and review these additional materials after the
playtest session. But make sure to use notes to cross-reference with the video
recordings to find relevant bits of footage rather than getting caught up re-
watching hours of footage! We suggest adding exclamation points and
noting the time or level so that these bits of footage can be easy to cue up
and review.
As with all of this documentation, be sure to share it in a place where the
team can access and review it. In the evaluate phase, any responses to the
playtests will be added to the design document and reflected in schematics
and task lists. (See Chapter 7, “Game Design Documentation,” for more
details on this kind of documentation.)

The Difference Between Input and Feedback
Before moving on, it’s important to recognize some arguments that have
been made against the iterative process. One of the stronger stances against
iterative design comes from the critic and designer Mattie Brice.3 As Mattie
points out, the player-centric iterative cycle can lead to the designer
changing or smoothing out their original message to suit players. For
gamemakers interested in creating challenging works, this can be
problematic because it can water down the intended expression and
experience of a game. Lana Polansky takes up a similar argument, noting
that the player-centric approach can lead to gamemakers taking it easy on
players.4 Further, by treating the player as central, gamemakers
unintentionally have created a situation in which players often expect to be
coddled and given what they want. Together, Brice and Polansky point out
player-centered design has its problems and limits.

3 Mattie Brice, “Death of the Player,” Alternate Ending. www.mattiebrice.com/death-of-the-
player, 2014.

4 Lana Polansky, “The Customer Is Often Wrong (Fuck the Player),” Sufficiently Human.
http://sufficientlyhuman.com/archives/599, 2014.

There are also certain kinds of games for which playtesting is not really
possible. Mattie draws an apt analogy in her essay, drawing a comparison to
asking a romantic interest to give feedback on an early draft of a love letter.
This would let the cat out of the bag, so to speak, before the letter writer has
their thoughts fully formed.
Mattie and Lana’s thoughts on the role of playtesting bring up an important
distinction between input and feedback. When game designers use the
process to get player input on a game’s design, it is likely that the game will
change to more fully suit player interests and tastes. This is different from
getting feedback, which the game designer takes into account but doesn’t
necessarily act upon. Jonathan Blow, the designer of Braid and The Witness,
has an interesting relationship to iteration and playtesting. For Blow,
videogames are an expressive medium through which he has particular
things to say. He isn’t interested in getting ideas from his playtesters, yet he
still playtests. Instead of looking for ways to better entertain his players,
Blow playtests to make sure his games provide the play experience he
intends. So playtesting becomes a tool for calibrating his expression rather
than a method of giving players what they want.
The thing is, almost every creative medium has its own version of
playtesting as feedback mechanism. For poets and writers, it is called
workshops; for playwrights and screenplay writers, it is called table reads;
for artists, it is called critiques. In these situations, the person creating the
poem, play, or painting solicits feedback from their peers. This may come in
the form of notes on where the work falls short of the intended goals, and it
may come in the form of input, or suggestions, on how to change the work.
Feedback points out the problems, while input suggests changes that may or
may not be in line with the creator’s intentions. The point is, no matter what
field of perspective an artist or designer brings to the creative process, there
is almost always room for feedback, and at times, input, so long as the
creator knows what to do with it.

http://www.mattiebrice.com/death-of-the-player
http://www.mattiebrice.com/death-of-the-player
http://sufficientlyhuman.com/archives/599

Summary
Playtesting is where your team gets answers to the question that your
prototype asks. It’s also where you are likely to see your playtesters struggle
and your game fail to provide the play experience you want. This is exactly
what you need to make your game better. Playtesting early with your team,
fellow game designers and friends will help you see what’s working and
what isn’t with your game. Later playtesting with your target audience, new
players and experienced players will help you refine your game and turn it
into something great. Remember to introduce, observe, listen, survey, and
discuss with your playtesters and to record the results so that you can
remember and discuss them with your team—which leads us to the next step
in the iterative cycle: evaluate.
The six kinds of playtests include the following:

 Internal tests: Playtesting the game yourself or with your team.
Internal testing takes two forms: for quick loops and reviews with the
team, and then as a way to make sure the prototype is ready for
playtesting with people outside the team.
 Game developer tests: Playtesting with fellow game developers:
people who understand the game design process.
 Friend and family tests: Another form of playtest is with friends and
family—people with whom the team is comfortable sharing an in-
progress game.
 Target audience tests: Once the game’s design has progressed to core
game and complete game prototypes, it’s time to bring in people who
enjoy the type of play experience the game provides—in other words,
the target audience.
 New player tests: New player playtests are those that involve people
new to the game. They are best for core game and complete game
playtests to help see how new players will learn and enjoy the game.
 Experienced player tests: Experienced player playtests are those where
playtesters play a prototype over a longer period of time.

There is more to do than just decide what kind of playtest is needed for the
current prototype. Planning is important in making the most of the playtest
opportunity. There are a set of steps that help make a successful playtest:

1. Picking a time and place

2. Planning what is to be evaluated
3. Deciding how to document the playtest

Once the playtest begins, there are four key steps:
1. Introduce
2. Observe
3. Listen
4. Discuss

Depending on what is being playtested, there are a number of things to
observe and document:

 Gameplay
 Visuals and audio
 Bugs
 Player comments
 Player behaviors
 Tester observations
 Ideas generated during the playtest

Chapter 12. Evaluating Your Game

Evaluation is where you consider your game’s design, interpret the outcome
of your playtests, and make decisions about how to refine your design plans.
This directly flows into the first stage: conceptualization. You are reviewing
the questions and answers (both expected and unexpected) and then making
decisions about how to improve your game, including what kind of
prototype will be next in the process.
Evaluation is the final, and sometimes most challenging, step in the iterative
cycle. This is where all of the feedback from playtests gets examined by the
team. If prototypes pose questions that are answered through playtests, then
the evaluate phase is when those answers are reviewed and turned into
actionable ideas for design revisions. The answers from the playtest,
however, aren’t always clear. Think of yourself as the doctor, the game as a
patient, and the playtest session the symptoms the patient reports to you.
Playtester feedback is what the game is saying to you about the alignment
between your design values and your player experience. The team’s
observations of the playtest, and what the playtesters do and say, are the
evidence considered to diagnose your game’s design. Just like the medical
profession, it takes time to accurately diagnose problems, and treatments can
run the gamut from “take two aspirin and call me in the morning” to
complex surgery.

Figure 12.1 Evaluating is the fourth phase of the iterative cycle.

Reviewing Playtest Results
To get started with evaluation, think back to the questions posed in the
prototype. Was the prototype exploring the play experience? If so, the
evaluation should be focused on that aspect of the game. If the prototype was
an exploration of art, code, or other elements around play, then make sure
the evaluation focuses accordingly. The important thing here is to focus the
evaluation on what was present and under evaluation.
Next, consider the answers that emerged from the playtests. This isn’t
always as easy as it might seem. With the prototype, playtest notes, and
documentation in hand, the team should review what happened during the
playtest. This can happen in a couple of ways: individually review and
collectively discuss, or collectively review and discuss. However the team
decides, everyone should focus on thinking about issues in a structured way,
focusing on what, where, why, and the takeaway.

 What: Instead of thinking in broad terms—it was awesome, players
had fun, the game was too hard, and so on—break down feedback and
observations from the playtest into small moments that highlight the
good and the bad of the game, its design, and how that was
implemented in the prototype. Focus on what actually happened, not
your or a teammate’s analysis. Did a playtester not know how to use a
particular action? Did the players consistently laugh or get frustrated at
a particular moment? Focus on the evidence, and not yet the team’s
interpretations.
 Where: An important aspect of evaluating playtest feedback is
knowing the context within which the moment was observed.
Sometimes knowing the specific moment within the gameplay is
important. Was the player trying to achieve a particular goal? Were
they dealing with a particularly challenging moment in the game?
Other times, problems arise around aspects of the game not yet
implemented, like someone complaining about the plainness of the
game when art direction hasn’t been implemented.
 Why: For each of these moments, diagnose why you think it happened.
If the player didn’t know how to use a particular action, was it because
the control scheme wasn’t explained? Did the game not provide the
experience hoped? Or did the action work in an unexpected way? Try
to understand the underlying causes of the feedback on the prototype.
 Takeaway: The most important thing in reviewing the playtest is
coming to a consensus on what the playtest reveals about the game’s
design. Getting to a specific comment like “the paddle controls are too
loose,” “players seem to jump instead of climb,” or “the object-
oriented storytelling is not introducing the secondary characters well”
is what to aim for. This requires a certain degree of diagnostic skill for
converting player feedback into decisions for revising the design of the
game. Again, this is a lot like what doctors do when reviewing a
patient’s symptoms. The feedback may be evidence of something, but
the underlying cause still needs to be diagnosed. This diagnosis is
especially important when players suggest a specific design change,
like, “I think you should make the score bigger on the screen.” Instead
of just translating this into the design task “make score bigger,” try to
understand why the playtesters suggested that. This is like a patient
coming into the doctor’s office saying, “I have a sprained ankle.” The

patient is diagnosing themself, but the doctor needs to understand why
the patient thinks they have a sprained ankle and look at all of the
evidence before the doctor makes a diagnosis. What are the
symptoms? It could be that the playtesters are saying that they don’t
see the score changing—or that they think the score is important and
that in the fast pacing of the game they miss it. A bigger score might
not solve the problem. Instead, other forms of feedback about player
performance might make more sense, such as a screen between
matches emphasizing the score and player achievements.

Think of yourself as a doctor of game design. There are various ways to
consider this feedback from a design perspective. But most importantly,
think about it in relation to your design values. This could be an opportunity
to bring your game more in line with them. If the team is not careful, this
process can turn into a scene from the TV program House, where Hugh
Laurie’s character berates and talks over his colleagues. So be careful about
keeping things constructive during the evaluation process.

What to Think About
Some of the most important aspects to evaluate about a game’s design are
the places where design values translate into player experience. Being able
to think about how players are or aren’t getting the intended experience often
has to do with a combination of the implementation of basic game design
tools and the mechanisms by which players engage with the game. Thinking
through each of these is important during the evaluation of the prototype and
playtest. Before starting this review, it is important to think back to the
design motivations and related design values established for the game.
Taking the time to refresh the team’s hopes by looking back over the design
values will help focus the team’s evaluation of the playtest.

 Actions: Do the players understand what they can and cannot do when
playing the game? Are the controls intuitive or easy to learn and
master? Are players able to develop skill around the core actions of the
game?
 Goals: Do the players understand the game’s goals? Are players
creating their own goals in addition to or instead of? How is the game
communicating the goals? Are the goals supported by the actions,
objects, playspace, story, and so on?

 Challenge: Is the game providing the right degree and kind of
difficulty or push-back? Does the game keep players engaged? If the
challenge comes from the subject, is it coming through during the play
experience?
 Information spaces: Are players able to make sense of the information
provided by the game? Is there too much information given the pace of
the play experience? Too little? Are players missing out on essential
information?
 Feedback: Is the loop between player actions and the game’s response
clear? Can players interpret the outcomes of their actions with
confidence?
 Decision-making: Are players able to make decisions about how to
pursue their goals and have the experience they seek?
 Player perceptions: Does the way the playspace is represented support
the intended play experience?
 Contexts of play: Is the place where the game is played having an
impact on player experience? How about the time of day? What else is
going on around the play session?
 Takeaways: Is the game conveying the intended message, concept, or
experience?
 Emotions: What emotions arise during play? Do they correspond to
those hoped for?

Interpreting Observations
Once the team has captured the key observations of the playtest, it is time to
think about what these observations say about the game’s design. This
breaks down into two key categories: strengths and weaknesses, or even
better, intended and unintended strengths and weaknesses. Often, players
will respond to things in the game that you hadn’t anticipated or even
intended to be part of the play experience. Take careful note of these
moments for analysis. Intended strengths hopefully relate to the design
values but may directly contradict them. Keeping them in mind as you
discuss what you saw is very helpful, as it gives you another marker for
evaluation.

Sometimes player responses that seem negative are actually what you were
hoping to achieve. Maybe players said the game is too hard, which was
intentional, or maybe they lament it is too short, but that was by design. With
innovative design, there can often be a tension between player expectations
and the design motivations and design values of the game. This particularly
comes into play around genre conventions and the expectations players
develop around how games will play. Bending and breaking convention is a
hallmark of experimental and innovative game design, but it can also be a
sign of poorly conceived design. Finding the right balance between
intentional innovation and design oversights is a real challenge. Design
values are always helpful in reminding the team of what they hope to
achieve with a game and whether or not player expectations are inline or
outside the focus of the game.
We taught a course in game design to a group of high school students once,
and after a playtest, one of them said their playtesters “played it wrong.” Of
course, that’s one way of looking at the weaknesses in your game that are
surfaced in a playtest, but if they played it “wrong,” it’s likely that there’s
something in the design that needs to be addressed. Or, it could be that the
way players played it is right, and perhaps more intuitive and fun than the
way it was designed to be played. Either way, these revelations in a playtest
are invaluable. This sounds counterintuitive—players exposing weaknesses
is gold—but it’s true. When it becomes apparent something is not working,
you can fix it. A playtest helps give clarity about what works and what
doesn’t. And it shows the path for improving the game.
As with the strengths of the game, look for intended and unintended
problems. Some of that will be anticipated, but there will inevitably be
concerns previously not seen. And that is a good thing, as it is always better
to find out while problems can still be addressed. Taking the time to focus on
the strengths and weaknesses in your prototype will help get to the next step:
refining the game.

Conceptualizing Solutions
We have all this feedback now. How do we turn it into actual changes we
want to make to the game’s design? This is where we return to
conceptualize, the first step in the iterative design cycle. Many of the
techniques are the same as outlined in Chapter 9, “Conceptualizing Your
Game”—brainstorming, checking in on design motivations, and design
values—but the context is different. With a full cycle of prototyping,
playtesting, and evaluation complete, we now have seen some aspect of our
game through our players’ eyes. We have experienced what works and what
doesn’t in the game’s design, or at least the aspects of it captured in the
prototype. Because of this, we have much more specific feedback to
interpret, and we might need more time to identify what we need to change
in our prototype. So we recommend a six-part approach to making decisions
about revisions to your game, whether it be early in the design process or
later in the playable prototype phase: review, incubate, brainstorm, decide,
document, and schedule.

Review
To make sure everyone knows what issues are being worked on, a two-step
review process is always helpful. First, to review the strengths and
weaknesses found during the playtest, make sure the team is clear on them
and that there are no misinterpretations. The second step is to revisit the
team’s design values to make sure that the way we translate the feedback
into actual design tasks helps us get closer to the values that we identified in
the beginning. Returning to the design values at every step of the way is like
tuning an instrument or balancing the tires on a car so that we can move
forward with them in mind as we make decisions about the game’s design.

Incubate
With the strengths, weaknesses, and design values in mind, we then mull the
specific issue over. Sometimes the issues are interconnected, making a
solution that much more complicated to determine. Often, we begin with
some time for everyone to think through the problems on their own, writing
all their ideas for a given issue. This is a great way to let everyone think
about solutions. How long everyone thinks on their own can vary.
Sometimes we give ourselves 10 to 15 minutes. Sometimes we give
ourselves a couple of days. Some people incubate best while running, or
napping, or washing dishes. It really depends on the particular issues, where
the game is in the design process, and other variables. The general rule,
though, is the bigger the issue, the more time it can take to solve.

Brainstorm
Once the incubation phase is over, we gather to brainstorm ideas for
strengthening our game. Capturing the ideas in a way everyone can see is
always helpful. If in person, use a whiteboard, chalkboard, or a computer
screen everyone can see. If remote, use a shared document, virtual
whiteboard, or other shared method. These discussions should be inclusive,
letting everyone share their ideas. (Remember the brainstorm rules?) Once
all the ideas for each issue under discussion have been heard, it is time to
start thinking about which solutions are best for the next prototype. Often,
ideas combine or even lead to new ideas. Make sure all these are captured,
too.
Here are a couple pointers for brainstorming solutions to your design. You’ll
likely come up with new ideas at this point to prototype and explore. That’s
great, but be careful. This is when you run the risk of overloading your
design. It’s key to identify the things that you absolutely need to do for your
next prototype and playtest and the ones that are lower in priority.
Sometimes the ideas that emerge here are great, but they’re not perfect for
the current game. So write them down, and save them for a future project.

Decide
With all the options discussed and their merits weighed, the team should
make decisions about which solutions to implement. How do you know
which are the right choices? Sometimes it is obvious, and sometimes it is
really hard to figure out. But always keep the design values in mind, and let
them help decide what is best for the game. It is better to make a decision
than to spend too much time debating among the team. Getting to the next
implementable prototype is much better than the perfect idea, so put
emphasis on actionable decisions that are in the spirit of the design values
whenever possible.

Document
With decisions made, it is time to divide tasks among the team to realize the
solutions. First, capture the revisions that need to be made to the game
design document. Then translate this into a series of tasks. Make certain
everyone knows what they are responsible for. Using a tracking spreadsheet
similar to what we described in Chapter 7, “Game Design Documentation,”
is helpful for this.

Schedule
Once everyone knows what they should be doing, the team should agree on a
schedule for getting to the next prototype. This may be a couple of hours, it
may be a couple of days, or it may even be a couple of months, depending
on how big the game is, where you are in the process, and other
commitments team members have outside the project. Again, a tracking
spreadsheet is really helpful in working through all the details.

Summary
Evaluation is one of the more challenging and complex steps in the iterative
game design process, but it’s also where your game gets better. It’s important
to take your time, review the playtest feedback, and discuss and diagnose
with your team. Consider your basic game design tools and the mechanisms
by which players engage with your game as you do, and brainstorm
solutions before jumping to conclusions. Of course, everything is guided by
a review of your design values and documented so that you can stay on the
path to finishing and releasing your game.

Following are the steps to evaluating your design:
1. Review: Look at the strengths and weaknesses exposed in the playtest,

and review the design values to make sure the design is on track.
2. Incubate: With the strengths, weaknesses, and design values in mind,

we take some time to consider the feedback and possible solutions.
3. Brainstorm: Brainstorm ideas for strengthening the game, using

techniques from Chapter 9.
4. Decide: With all the options discussed and their merits weighed, the

team should make decisions about which solutions to implement.
5. Document: Capture the revisions that need to be made to the design

document and schematics, and break them down into tasks for the task
list.

6. Schedule: Once everyone knows what to do, the team should agree on
a schedule for getting to the next prototype.

Chapter 13. Moving from Design to Production

The first time through the iterative game design cycle isn’t the end of the
game design process—it is just the beginning. How many times a game
needs to move through the process differs from game to game and team to
team. And knowing when the design phase is finished is not always easy to
determine. In this chapter we look at some of the diverse ways game
designers move through the iterative process and think about the ways to tell
when the design is complete.
“Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.”1

1 From Beckett’s novel, Worstward Ho, 1983.

These words of wisdom from Samuel Beckett sum up the most important
lesson iteration teaches us—creativity is more about failure than it is
success. That’s the power of iterative design—it is a set of processes that
embrace failure, and in time, use failure as the raw materials for creating
good games. When we use the iterative cycle, we are posing a question that
we theorize during the conceptualizing phase, we give form to during the
prototyping phase, we answer during the playtesting phase, and we interpret
during the evaluation phase. This leads to the next question, and thus, the
next iterative loop. Sometimes these loops are trying again and again to
answer the same question. Sometimes an iterative loop satisfactorily answers
the question, and so the next iterative loop can move on to a different aspect
of the game.
While the phases of conceptualize, prototype, playtest, and evaluate are
pretty universal, there are many different ways to approach how the cycles
of iteration actually play out. To show this range—including a case where
the iterative approach is barely used at all—we have four case studies
demonstrating different approaches to the iterative game design process.
Each of the four examples shows how different the iterative process can be
depending on the design values, the kind of technological tools used, and
most importantly, the kind of play experience the gamemakers wanted to
provide. These include Local No. 12’s The Metagame, Die Gute Fabrik’s
Johann Sebastian Joust, Tale of Tales’ The Path, and anna anthropy’s Queers
in Love at the End of the World.

Case Study: The Metagame
The Metagame (see Figure 13.1), a party game we both worked on, took
many trips around the iterative cycle, in the process becoming several very
different final games—from a game show to a conference game to a party
game to an art project and finally, back to a party game. Originating in a
design for an MTV game show by Frank Lantz and Eric Zimmerman, The
Metagame became a game platform of sorts, leading to a new life as it exists
now, a party game by Local No. 12, our company with Eric Zimmerman.
Our first redesign of the original idea was to create a collectible card game
for the 2011 Game Developers Conference (GDC). We wanted to create a
game that fit naturally into the kinds of activities already present at GDC.
One thing all of us had noticed was that people spent a lot of time between
conference sessions and late into the evenings debating the merits of
different videogames. So we looked for a way to develop a game around this
already-present behavior. We spent about six months iterating on the
gameplay, the art direction, the wording on the rules, and even how we
would distribute the cards to conference attendees. We ran playtests at our
respective schools, at small conferences and with small groups of friends—
any opportunity we could find, really. The efforts paid off, as the conference
game version of The Metagame caught on at GDC, with more than 3,000
people playing by the end of the conference.

Figure 13.1 A sampling of The Metagame prototypes created over the
years.

At the end of the week, we launched a Kickstarter campaign to produce a
full deck that we released a year later. This required a lot more than just
taking the existing cards and packaging them in a box. The conference play
sessions proved to be a large-scale playtest for us, allowing us to learn all
sorts of things about the information on the cards, the approach to images,
the kinds of conversations that emerged from the cards, and so on. All this
informed the revisions we made to the game. We also had to rethink the
game and its content to fit different play contexts. Instead of playing in
conference halls and bars, we now had to design for living rooms,
classrooms, and other spaces. We revised the basic game structure and began
adding new play modes that were more conducive to smaller groups and
contexts. This led to a period of tight iterative loops around the play modes
and how they were captured in the rules booklet. While this was going on,
we worked on new card ideas and illustrations.
After launching the boxed version of The Metagame Videogame Edition, we
were approached to do a project for the art magazine Esopus. We decided to

create another version of The Metagame, this time expanding the content
from videogames to all kinds of culture—from film to fashion, literature to
fine art, and beyond. This led to a new phase of iteration around broadening
the content, but also making sure the play modes made sense to the new
audience as well as rethinking the size of the cards and how they might be
bound into a magazine.
The response from Esopus readers was great, so again, we gained the
courage to run another Kickstarter campaign to release a boxed version with
the broader range of content. The current version has ten games you can play
with the deck—like a traditional deck of cards where you can play anything
from poker to go fish. As with the previous versions, we iterated content and
the games you can play with the deck hundreds of times, first using index
cards and then working with a small-run Internet printer for a more genuine
card feel. We also playtested with various age groups and cultural
backgrounds, trying to get a good mix of content in the game that could
appeal to an intergenerational audience—your family, after a holiday meal.
Much of the content was inspired by these playtests, as people naturally
recommended this or that television show, fashion design, or art piece.2

2 For a more detailed look at the iteration on the game’s visual design, see John’s essay, “How the
Metagame Cards Went from a Sports Card-Like to Dictionary Chic.”
www.heyimjohn.com/metagame-card-design/. 2015.

The Metagame, then, was an iterative process that spanned five years and
involved different content, audiences, and forms. While the play modes,
audiences, and content changed, the primary goal of the game—provide a
playful structure for talking about pop culture—never wavered. Staying
focused on this goal allowed us to have a clear set of goals for each
successive version of the game and helped us maintain the spirit of the play
experience even when almost everything else changed.

http://www.heyimjohn.com/metagame-card-design/

Case Study: Johann Sebastian Joust
Another party game, Johann Sebastian Joust (see Figure 13.2), had a
decidedly faster path to completed design. In fact, the core play experience
evolved over just 48 hours during the 2011 Nordic Game Jam. Despite this
fast design process, Douglas Wilson, the game’s designer, describes the
process as one with roots in a much longer exploration of motion-sensitive
controllers. Douglas and his colleagues learned some valuable lessons
experimenting with motion controllers that, at the time, may have felt like
failed projects, but in the end, were just the right experimentation to help
Douglas create J.S. Joust. The technical experience and knowledge of how
motion-sensitive controllers could be used found its way to the game jam,
with the interest in creating a game that emphasized player interaction
without the mediation of the screen—a videogame without video. The
discovery of the core game came from experimentation with the technology
during the jam, with a focus on making a game that was multiplayer and
used music as a core element instead of visuals on a screen.

Figure 13.2 Johann Sebastian Joust. Photo by Elliot Trinidad. Used with
permission of the IndieCade International Festival of Independent Games.

The original intent was to try to create a racing game, where players would
need to race in slow-motion so they wouldn’t jostle their controllers. As
Douglas and his collaborators were testing the sensitivity of the controllers, a
happy accident occurred. He describes it:

“The breakthrough moment soon followed when Nils and I
happened to find ourselves walking towards one another from
opposite sides of the room. Staring at one another, face-to-face, each
of us silently hatched the same mischievous plan; as soon as we
were in range, we shoved one another in an attempt to make the
other lose. In that one instant, it became clear to us that the game we
actually wanted to make was one that involved an antagonistic duel.
In a certain sense, it is debatable whether I even “designed” J.S.
Joust. As I see it, Nils and I pulled the game out of the social ether,
collaboratively.”3

3 Excerpted from page 120 of Doug Wilson’s PhD thesis, “Designing for the Pleasures of
Disputation—or—How to Make Friends by Trying to Kick Them!”, 2012.

This is a great example of how design and playtesting are intertwined, and
often, how one might simply start playing with a technology to find the fun
in the game. Douglas calls this approach “toy-centric” design. By exploring
the play potential of a new piece of technology, motion controllers, Douglas
sought out a way to turn those controllers into a toy around which to build a
game. By serendipitously homing in on players simultaneously balancing
their own controller while trying to jostle that of their opponents, Douglas
and his collaborator had found that perfect toy around which to design a
game. In the ensuing 24 hours, Douglas coded up the core play experience.
For a couple years, the game remained more or less the same—a game that
required setup and oversight by Douglas or someone else who could provide
the basic instruction and technical support to run the game—in some cases,
up to 16 players, each with their own controller. These events became
playtests for the core game, as Douglas was more often than not there to set
up and run the game. This allowed small refinements to the play and the
game software.
Several years later, J.S. Joust was released on the PlayStation in the local
multiplayer compilation Sportsfriends, with much the basic design
developed during that initial 48 hours. Of course, it wasn’t as easy as simply
porting the code from the game jam to work on the PlayStation platform.

Changes to the technology (from Wiimote to PS Move controller) and subtle
refinements in player feedback were implemented, as was building an
infrastructure for players to be able to run the game for themselves. The
biggest challenges came in the development of a stand-alone system for
people to run the game themselves. This required the development of an
interface and menu system for teaching players how to play and to walk
them through the setup of the game. Designing and implementing this took
two years, an order of magnitude longer than the initial design.
With J.S. Joust, we see a game that seemed to come together almost by
magic in a short period of time. The reality, though, is that the year or more
of experimentation around motion controls before the game jam and the two-
plus years of design and development of a stand-alone version of the game
afterwards were equally important. So while the Hollywood version of the
J.S. Joust story might focus on those first 48 hours, the reality is that it took
four years to create, despite that moment of design clarity at the Nordic
Game Jam.

Case Study: The Path
Tale of Tales’ The Path took a very different approach to iteration than the
previous two examples. Instead of starting with an idea around gameplay or
an interest in finding the fun in a piece of technology, Auriea Harvey and
Michaël Samyn began with a setting (a path in the forest), a story (Little Red
Riding Hood), and a genre (horror). All of these design motivations came
together in the process of writing a grant proposal to support the
development of the game—funding being a constraint we hardly address in
this book, but a real one, and part of any development process. The funding
they received was modest, so they made a choice early on to use tools with
which they were comfortable and an engine into which they had already put
some work. A previous project, The Endless Forest, provided the
environment rendering system, and a partially completed project, Drama
Princess, was shifted to serve as the character behavior manager.
With a setting, story, genre, and tools sorted out, there was still a lot left to
think through with the game. An important inspiration came from the music
of Kris Force and Jarboe, the musicians they would work with to create the
game’s soundtrack. Their music helped solidify the mood and emotional
atmosphere that Auriea and Michaël wanted to capture in the game.

This is where The Path diverges from the previous examples (see Figure
13.3). To playtest the emotional effect of the game, its environments, art, and
sound needed to be well developed. This meant it would be difficult to
playtest without fairly advanced work already in place in modeling and
texturing the environments and coding in the event sounds and score. So
they focused early design cycles on creating a navigable world without much
in the way of gameplay. Testing for emotional response sometimes involves
bringing much of the art and media together in the prototype. Auriea and
Michaël don’t always playtest with outside playtesters, but for The Path, one
of the goals was to appeal to gamers and nongamers alike—and to do so,
playtesting was the only way to determine whether that was working. In
Figure 13.3, you will see how closely Auriea and Michaël observed their
playtesters, with Auriea sketching players as they played through the game.

Figure 13.3 A sketch drawn by Auriea Harvey of a playtester for The
Path.

The engine they used to create the game, Quest 3D, also provided an unusual
twist in the iterative process, blurring the lines between prototyping and
playtesting due to the “live coding” nature of the development environment.
If the behavior of a character was modified, it happened in real time, as if
they were living beings inside the world with shifting motivations. A tweak
to the color of the sky, or the scale of the flora would immediately take
place, shifting other elements in the environment along with it. So in
essence, while they were prototyping the game, Auriea and Michaël were
also playtesting it—playing in a world and making changes to it in real time,
similar to the way one might play with dolls. This allowed for a very fluid
movement between playable prototyping and internal playtesting. Indeed,

the process allowed for a lot of design decisions emerging from Auriea and
Michaël’s playtesting.
Eventually, after much internal and external playtesting of the fully realized
game world, gameplay emerged. They created a series of adventure-game
style puzzles and object collection goals that they designed and
implemented. The gameplay changed radically after they heard the
completed soundtrack by Kris Force and Jarboe. Auriea and Michaël
realized that the game actions and the music didn’t quite go together. So they
removed many of the small puzzle-solving tasks they had designed and
made the game more about exploration and discovery.
This is a great example of sticking with your design values: having a sense
of the kind of emotional tones you want your game to generate and being
willing to “kill your babies” when it’s just not working. The iterative process
of The Path is one that we probably wouldn’t recommend to our students for
their first game. Taking so long to get to a playable prototype and playtest
can involve spending many hours of art production work that ends up on the
cutting room floor. But, by the time The Path project started, Auriea and
Michaël had clocked thousands of hours in previous projects that fed into the
development process and helped them gauge scope. So while we would say,
“don’t try this at home,” we think that this is an exceptional example of
designing for emotional effect and being true to design values.

Case Study: Queers in Love at the End of the World
The final case study is anna anthropy’s Twine game Queers in Love at the
End of the World (see Figure 13.4). Though an experienced game designer,
able to work in a variety of development environments herself, anna was
attracted to the low barrier-to-entry of Twine—the tool allows pretty much
anyone with access to a computer and basic English language literacy to
create games. It was important to anna to create her Twine games without
having to resort to any programming or visual design work so that her games
could serve as models for aspiring gamemakers. This established one
important design value for the game—showcasing the accessibility of Twine
as a game creation tool.

Figure 13.4 Screenshot from Queers in Love at the End of the World.
A little earlier, anna encountered S. Astrid Bin’s Twine game PANIC!, which
had an interesting feature—a timer on all player decisions. anna thought this
was a clever way to add challenge to the game, as it pushed on the core
action of all Twine games—reading comprehension. Since the feature
required programming, anna tucked away the idea for later use.
At some point, someone released an open source code snippet for adding
timers in Twine, so anna felt it was okay for her to make use of it in a game.
With this in hand, anna saw that an upcoming Ludum Dare challenge was
creating a 10-second game. (Ludum Dares are 48-hour game jams, each
centered around a theme.) This inspired anna to find a use for the Twine
timer. Though she didn’t participate in the Ludum Dare, she decided she
would create a game that lasted 10 seconds—a great example of designing
around constraint! She also decided she wanted the game to use the time
constraint to create a social pressure rather than a test of skill or puzzle-
solving. anna was in a long-distance relationship at the time and felt she
never had enough time with her partner. She began thinking about how she

was always in a position of having to make the most of the time she had,
which led her to have to make decisions about what she really needed when
with her partner and what she was able to give her partner in return.
From there, she came up with the game’s theme: a queer couple with only 10
seconds together before the world ends. She quickly came up with the first
set of choices in the branching structure of Twine: “kiss her, hold her, take
her hand, tell her.” She then began working on the paths that emerged from
the “kiss her” choice. Each choice begat more choices, until anna found
herself writing hundreds of decision points. The game’s poetic feel in part
comes from the raw, impulsive nature of each decision point and the
increasing franticness as the short time passes. To help maintain this feeling,
anna kept her editing to a minimum, only revising decision points that didn’t
feel quite right or in the spirit of her own experiences as a queer woman.
Because the game was so much about a sense of urgency but also her own
feelings about the pressures of time on love, playtesting differed from
previous examples. anna focused the playtesting on making sure there were
no technical problems such as the timer not always working or dead links in
the branching narrative. anna was not looking for ideas for making the game
better or input on adding content to the game. She simply wanted to make
sure the game was playable as she designed it.
anna’s concepting, design, and playtesting certainly unfolded over a period
of months, but it lacks the cycle of loops the other case studies used as part
of their design. Queers in Love at the End of the World only tangentially fits
into the ideas of iterative game design as captured in this book. This is why
we’ve used it as the final case study—to point out that not all games require
a full iterative process to be created. In the same way it was important to
anna to use Twine in a way that someone with game design or programming
experience might, so too is it important to point out that a deep knowledge of
iterative processes isn’t a requirement for making games. In the same light,
having the time and resources to devote to the iterative design process is not
something that can be assumed. Sometimes all we have is a short period of
time to work on a game.

How to Know When the Design Is Done
As the chapters in Part III, “Practice,” make pretty clear, the iterative design
process is one that takes a lot of time, patience, and energy. But it is also just
the beginning: it is the design of the game. There is still another phase to go:
production. Production is when the game’s design, technical planning, and
other related preparatory work is complete and what is left is building the
final game. It’s true, the team has likely already built the game a number of
times during the design process through the repeated loops of the iterative
cycle. But that was all in the service of conceptualizing, prototyping,
playtesting, and evaluating the game’s design. It wasn’t about building a
solid, stress-tested piece of software.
The rule of iterative design is fail faster. During iteration, the team is
thinking about the final game but avoids getting hung up on doing things
right. You know you will fail, so why waste time trying to make everything
perfect? But in production, the opposite is true. Things have to be just right
to keep them from failing—the team must create bullet-proof server code for
handling the Internet traffic in some games or debugging collision detection
code to withstand all the things players will try in others.
This brings up one of the more challenging aspects of game design—
knowing when to phase out of iteration and design and into production.
What are some signs that it’s time to move into production? How does the
team know when to stop building and testing prototypes and start building
the final game that people will see and play?

 Complete game prototype: For one, the team has made at least one
complete game prototype. This should include all of the game’s
features, including the core gameplay, interface elements like the
menus, scores and buttons in the game, the art direction, and sound
direction. In other words, all of the elements that make up the
experience are decided on and locked.
Once a fully tested complete game prototype has been tested, it should
be pretty clear what issues remain open. There are no forks in the road
ahead around big design decisions. There shouldn’t be any difficult
decisions about the sound or visuals, and there won’t be questions
about which platform the game will be published on. What’s left is to
simply complete the unfinished elements in your game.

 Playtesting: Knowing whether or not the complete game prototype is
proving out the game’s design takes plenty of playtesting and
refinement. To really be certain, the team will have tested with people
from your target audience. Their feedback is the litmus test for the
game and how close it is to expressing the design values. New player
and experienced player playtests are also really helpful. The new
player playtests help you understand the learnability of your game. The
experienced player playtests let you know the game holds up to
repeated plays, that it doesn’t lose its fun or become too easy to master
over repeated plays.
 Art direction: Another important consideration is the visual and sound
design of the game. The team has examples of the direction for the art
and sound. This doesn’t mean all the assets are created. For example, if
the game has a lot of different types of dinosaurs, this might mean a
few sample dinosaurs are already designed, like a stegosaurus, a
velociraptor, a pterodactyl, but the team has only placeholder art for
the tyrannosaurus rex, the brontosaurus, and the triceratops. Once the
team tests all of the dinosaur code and their interactions in the game,
there is still work remaining to the final models, textures, and so on.
This is production.
 Code: The team has all of the code written and tested in the complete
game prototype, but there might be some optimizing to do, some
cleaning up and making sure it’s well commented, and of course there
will be work to integrate the final art and sound assets. There will be
some final testing to do to squash any bugs in the code. It is often a
wise decision to step back and create a plan for the final software that
will guide the production. By creating diagrams of how the code
works, how the various libraries interact, it is likely that the team will
find ways to really optimize the code and make production time faster
than it would otherwise be.
 Text: If there’s any writing in the game, most of it will be written and
tested in the complete game prototype, but you’ll want to make final
edits and check for accuracy and continuity.
 Design values: The team will have reviewed the complete game
prototype against the design values. How close is the complete game
prototype in realizing the design values? When players playtest the
complete game prototype, is it hitting all the design values? Is there

anything that could be added or taken away from the game to express
those values more strongly and cleanly?
 Documentation: One of the clearest indications that a game is ready to
move from design into production is when the game design document
and accompanying schematics capture the full experience of the game.
These should serve as the blueprints for production, including detailed
information on the visual and sound production requirements of the
game, and accurate schematics for interfaces and menus.

If you’ve hit all these points, then the team is probably ready to move out of
iteration into production.

Getting Ready for Production
Once the team is ready to move out of the iterative cycle of concepting,
prototyping, playtesting, and evaluation and into final production on the
game, the team will want to create a production plan. The production process
can be a real slog if not prepared for properly. The honeymoon phase of the
design process is over. All the interesting decisions in the process have been
made, and now it’s just time to get it done.
Once the game design document, schematics, or any other materials are
reviewed and up-to-date, the next step is planning out production. This is
often handled by creating a new version of the task tracking spreadsheet
discussed in Chapter 7, “Game Design Documentation.”
Who is going to be part of the production team? It will likely be the same
people who were part of the design process. But if you need any special
skills, like someone to come in and help you do tasks that don’t involve
creative decisions, like resizing graphics or copyediting final text, you
should bring them on.
Once you have the who of your production team figured out, it’s time to
identify and write down what they will be doing (see Figure 13.5). For Ping!
we’ve been keeping a document to keep track of what we need to
accomplish for our prototypes and who will do them. We also identify if
there were any “dependencies,” or tasks that can’t be accomplished without
another one being finished first.

Figure 13.5 A production spreadsheet.
Finally, as with any task, having clear deadlines is essential. Identify who is
doing what by when. Without deadlines, nothing would get done. You will
probably need to adjust deadlines as the team goes, especially for your first
few games. It’s human nature to underestimate the amount of time it takes to
get something done. Try multiplying time estimates by 2 (that works for
John), and then adjust this number as needed. Whatever formula, do try to
set some deadlines in the process.
In addition to deadlines, you should set regular meetings with the team.
While it seems like there’s not much more to discuss because all of the open
questions in the design process have been answered, there are still going to
be things that come up and need the team’s attention.
Regular meetings, whether they’re weekly or more frequent, also keep you
honest. How much did you accomplish in the past week? If there’s nothing
to report, that’s a pretty clear indicator that you need to set aside more time
to work on the game.
Considering the who, what, and when in your production process, and
keeping track of these, will help you get to the finish line with your game.
It’s probably going to involve a lot of work and some late nights, but the
reward of seeing your game out in the world getting played makes it all
worth it.

Summary
All of the videogames we’ve talked about in this series were developed by
small teams or individuals. Making videogames is challenging, and it takes a
lot of practice. Start small, and don’t be afraid of failure. It’s just part of the
process. Iteration is the way to take just a small kernel of an idea and grow it
into a game. It just so happens that learning how to make games is its own
iterative loop. Dive in, make a game, put it out there, and then make another
one. We look forward to playing them.
Your game design is complete, you are ready to stop iterating, and you are
ready to move into production when you have

 Created a complete game prototype
 Successfully playtested with target audience members
 Successfully playtested with new players
 Successfully playtested with experienced players
 Met your design values
 Solid art direction
 A strong code base for your target platform
 Most of the final text for the game
 An up-to-date game design document

Works Cited

Introduction
anthropy, anna, and Naomi Clark. A Game Design Vocabulary: Exploring

the Foundational Principles Behind Good Game Design. Boston, MA:
Addison-Wesley Professional, 2014.

Fullerton, Tracy. Game Design Workshop: A Playcentric Guide to
Creating Innovative Games, 3rd edition. Bacon Raton, FL: CRC Press,
2015.

Salen, Katie, and Eric Zimmerman. Rules of Play: Game Design
Fundamentals. Cambridge, MA: The MIT Press, 2003.

Chapter 1
anthropy, anna. Queers in Love at the End of the World. (browser game),

2014.
anthropy, anna, Rise of the Videogame Zinesters: How Freaks, Normals,

Amateurs, Artists, Dreamers, Drop-Outs, Queers, Housewives, and
People Like You Are Taking Back an Art Form. New York: Seven
Stories Press, 2012.

Atari, Inc. Pong. Atari, Inc. (arcade), 1972.
The Chinese Room, Dear Esther. The Chinese Room (Macintosh), 2012.
Costikyan, Greg. “I Have No Words & I Must Design,” Interactive

Fantasy. No. 2, 1994.
Exquisite Corpse. Traditional parlor game.
Hickey, Dave. “The Heresy of Zone Defense,” in Air Guitar: Essays on

Art & Democracy. Los Angeles, CA: Art Issues Press, 1997.
Hopscotch. Traditional schoolyard game.
Meadows, Donella. Thinking in Systems: A Primer. White River Junction,

VT: Chelsea Green Publishing, 2008.
Mojang, Minecraft. Mojang (Windows), 2009.
Salen, Katie, and Eric Zimmerman. Rules of Play: Game Design

Fundamentals. Cambridge, MA: The MIT Press, 2003.

Soccer. Traditional sport.

Chapter 2
Atari, Inc. Pong. Atari, Inc. (Arcade game), 1972.
Burke, Liam. Dog Eat Dog. Liam Burke (tabletop roleplaying game),

2013.
Cardboard Computer, Kentucky Route Zero. Cardboard Computer

(Steam), 2013–2014.
Chess. Traditional boardgame.
Coco & Co., Way. Coco & Co (Macintosh), 2012.
Costikyan, Greg. Uncertainty in Games. Cambridge, MA: The MIT Press,

2015.
Cziksentmihalyi, Mihaly, Flow: The Psychology of Optimal Experience.

New York: Harper Perennial Modern Classics, 2008.
Darts. Traditional sport.
Foddy, Bennett. Speed Chess. Bennett Foddy (site-specific software),

2014.
Friedhoff, Jane, Slam City Oracles. Jane Friedhoff (Macintosh), 2015.
The Fullbright Company, Gone Home. Majesco Entertainment (Steam),

2013.
Go. Traditional boardgame.
Hide and Seek, Tiny Games. Hide and Seek (iOS), 2013.
Key, Ed, and David Kanaga, Proteus. Curve Digital (Steam), 2013.
Klamer, Reuben. The Game of Life. Milton Bradley (boardgame), 1960.
Leacock, Matt, Pandemic. Z-Man Games (boardgame), 2007.
Messhof, Flywrench. Messhof (Steam), 2015.
Naismith, James, Basketball. (sport), 1891.
Ninja. Traditional street game.
Nuchallenger, Treachery in Beatdown City. Nuchallenger (Macintosh),

2016.
Number None, Inc. Braid. Number None Inc. (Xbox 360), 2008.

Nutt, Christian. “Road to the IGF: Lea Schüonfelder and Peter Lu’s
Perfect Woman” Gamasutra. February 24, 2014.

Pachinko. Traditional arcade game.
Pinball. Traditional arcade game.
Poker. Traditional cardgame.
Porpentine, Howling Dogs. Porpentine (browser game), 2012.
Roulette. Traditional gambling game.
Salen, Katie, and Eric Zimmerman. Rules of Play: Game Design

Fundamentals. Cambridge, MA: The MIT Press, 2003.
Schüoenfelder, Lea, and Peter Lu, Perfect Woman. Lea Schüoenfelder and

Peter Lu (Macintosh), 2012.
Scott, Leslie. Jenga. Pokonobe Associates (puzzle game), 1983.
Secret Crush, SUNBURN! Secret Crush (iOS), 2014.
Squinkifer, Dietrich, Conversations We Have in My Head. Dietrich

Squinkifer (Macintosh), 2015.
Suits, Bernhard. The Grasshopper: Games, Life and Utopia. Tonawanda,

NY: Broadview Press, 2005.
Tale of Tales, Sunset. Tale of Tales (Steam), 2015.
Tennis. Traditional sport.
Young Horses, Inc., Octodad. Young Horses, Inc. (Windows), 2010.

Chapter 3
Abbott, Eleanor, Candy Land. Milton Bradley (boardgame), 1949.
Abe, Kaho, Hit Me. Kaho Abe (sport), 2011.
anthropy, anna. Queers in Love at the End of the World. (browser game),

2014.
Blackjack. Traditional cardgame.
Captain Games, Desert Golfing. Captain Games (iOS), 2014.
Charades. Traditional parlor game.
The Chinese Room, Dear Esther. The Chinese Room (Macintosh), 2012.
Chris Sawyer Productions, Rollercoaster Tycoon. MicroProse (Microsoft

Windows), 1999.

Coco & Co., Way. Coco & Co (Macintosh), 2012.
Die Gute Fabrik, Johann Sebastian Joust. Die Gute Fabrik (PlayStation

3), 2013.
Foddy, Bennett, QWOP. Bennett Foddy (browser game), 2008.
Garfield, Richard, and Lukas Litzsinger, Android: Netrunner. Fantasy

Flight Games (cardgame), 2012.
Gilliam, Leah. Lesberation: Trouble in Paradise. Leah Gilliam (tabletop),

2015.
Hasbro. Twister. Hasbro (boardgame). 1964.
Hecker, Chris, Spy Party. Chris Hecker (PC).
Juul, Jesper. “The Open and the Closed: Games of Emergence and Games

of Progression.” In Computer Games and Digital Cultures Conference
Proceedings, edited by Frans Mäyrä, 323–329. Tampere: Tampere
University Press, 2002.

Leacock, Matt, Pandemic. Z-Man Games (boardgame), 2007.
Love, Christine, Analogue: A Hate Story. Christine Love (Macintosh),

2012.
Magie, Elizabeth. The Landlord’s Game. 1904.
Maxis, SimCity. Maxis (Macintosh), 1989.
Messhof, Nidhogg. Messhof (Steam), 2014.
Molleindustria, The McDonald’s Videogame. Molleindustria (browser

game), 2006.
Ninja. Traditional street game.
Nintendo. Wii Sports, Nintendo (Nintendo Wii). 2006.
Pope, Lucas, Papers, Please. 3909 LLC (iOS), 2013.
Poker. Traditional cardgame.
Porpentine, Howling Dogs. Porpentine (browser game), 2012.
Sampat, Elizabeth, Deadbolt. Elizabeth Sampat (tabletop game), 2013.
Semi-Secret Software, Canabalt. Semi-Secret Software (iOS), 2009.
Sirvo LLC, Threes. Sirvo LLC (iOS), 2014.
Soccer. Traditional sport.

Squinkifer, Dietrich, Coffee: A Misunderstanding. Dietrich Squinkifer
(performance game), 2014.

Tale of Tales, The Path. Tale of Tales (Macintosh), 2009.
Team Meat, Super Meat Boy. Team Meat (Xbox 360), 2010.
Thekla, Inc., The Witness. Number None, Inc. (PlayStation 4), 2016.
Uvula, Wild Rumpus and Venus Patrol, Tenya Wanya Teens. (arcade),

2013.
Valve Corporation, Portal. Valve Corporation (PlayStation 3), 2007.
Valve Corporation, Portal 2. Valve Corporation (PlayStation 3), 2011.

Chapter 4
anthropy, anna. “level design lesson: to the right, hold on tight.” Auntie

Pixelante, 2009.
anthropy, anna. Queers in Love at the End of the World. (browser game),

2014.
Area/code, Drop7. Zynga (iOS), 2008.
Arkane Studios, Dishonored. Bethesda Softworks (PlayStation 3), 2012.
Bartle, Richard. “Hearts, Clubs, Diamonds, Spades: Players Who Suit

MUDs.” 1996.
Blendo Games, Thirty Flights of Loving. Blendo Games (Macintosh),

2012.
Burke, Liam. Dog Eat Dog. Liam Burke (tabletop roleplaying game),

2013.
Cater, John, Rob Dubbin, Eric Eve, Elizabeth Heller, Jayzee, Kazuki

Mishima, Sarah Morayati, Mark Musante, Emily Short, Adam
Thornton, and Ziv Wities. Alabaster. (Windows), 2009.

Chess. Traditional boardgame.
Crampton Smith, Gillian. “What Is Interaction Design?” in Bill

Moggridge, Designing Interactions. Cambridge, MA: The MIT Press,
2007.

Die Gute Fabrik, Johann Sebastian Joust. Die Gute Fabrik (PlayStation
3), 2013.

Fischer, Reece, “The Creation of Disneyland.” The Creation of
Disneyland. N.p., 2004. Web. 14 Jan. 2013.

Friedhoff, Jane, Slam City Oracles. Jane Friedhoff (Macintosh), 2015.
Garfield, Richard, and Lukas Litzsinger, Android: Netrunner. Fantasy

Flight Games (cardgame), 2012.
Garrett, Jesse James, The Elements of User Experience: User-Centered

Design for the Web and Beyond (2nd Edition). San Francisco, CA: New
Riders, 2010.

Gilliam, Leah. Lesberation. (tabletop game), 2008, 2015.
Gygax, Gary, and Dave Arneson, Dungeons & Dragons. TSR (tabletop

game), 1974.
Juul, Jesper, The Art of Failure: An Essay on the Pain of Playing Video

Games. Cambridge, MA: The MIT Press, 2013.
Key, Ed, and David Kanaga, Proteus. Curve Digital (Steam), 2013.
Kopas, Merritt, Hugpunx. Merritt Kopas (browser game), 2013.
Lemarchand, Richard. “Attention, Not Immersion: Making Your Games

Better with Psychology and Playtesting, the Uncharted Way,” Game
Developers Conference 2011.

Messhof, Flywrench. Messhof (Steam), 2015.
Molleindustria, The McDonald’s Videogame. Molleindustria (browser

game), 2006.
Naismith, James, Basketball. (sport), 1891.
Nintendo R&D4, Super Mario Bros. Nintendo (SNES), 1985.
Norman, Donald, The Design of Everyday Things. New York: Basic

Books, 2002.
Number None, Inc. Braid. Number None Inc. (Xbox 360), 2008.
Parsons, Talcott, The Structure of Social Action. New York: Free Press,

1967.
Porpentine, Howling Dogs. Porpentine (browser game), 2012.
Raskin, Jef. The Humane Interface: New Directions for Designing

Interactive Systems. Boston, MA: Addison-Wesley Professional, 1994.
Romero, Brenda, Train. (installation game), 2009.

Schüoenfelder, Lea, and Peter Lu, Perfect Woman. Lea Schüoenfelder and
Peter Lu (Macintosh), 2012.

Sharp, John. “Perspective,” in The Routledge Companion to Video Game
Studies. Ed. Bernard Perron and Mark J.P. Wolf. New York: Routledge,
2014.

Sirvo LLC, Threes. Sirvo LLC (iOS), 2014.
Tale of Tales, The Path. Tale of Tales (Macintosh), 2009.
Thatgamecompany. Journey. Sony Computer Entertainment America, Inc.

(videogame), 2012.
Ubisoft Montreal, Far Cry 2. Ubisoft (PlayStation 3), 2008.
USC Game Innovation Lab, Walden, a game. (Macintosh).
Valve Corporation, Portal 2. Valve Corporation (PlayStation 3), 2011.
Yu, Derek, Spelunky. Mossmouth, LLC (Xbox 360), 2008.

Chapter 5
Dreyfuss, Henry, Designing for People. NY: Simon and Shuster, 1955.
IDEO, Design Kit.
Shewhart, Andrew Walter, Statistical Method from the Viewpoint of

Quality Control. Washington, D.C.: The Graduate School, the
Department of Agriculture, 1939.

Chapter 6
Atari, Inc., Pong. Atari, Inc. (arcade), 1972.
Bauza, Antoine, Hanabi. R & R Games Incorporated (cardgame), 2010.
Captain Games, Desert Golfing. Captain Games (iOS), 2014.
Chen, Jenova. “Designing Journey.” Game Developers Conference 2013.
Chen, Jenova, and Robin Hunicke, “Discovering Multiplayer Dynamics in

Journey.” IndieCade 2010.
Clark, Naomi, Consentacle. Naomi Clark (cardgame), 2014.
Flanagan, Mary, and Helen Nissenbaum, Values at Play in Digital Games.

Cambridge, MA: The MIT Press, 2014.
Garfield, Richard, and Lukas Litzsinger, Android: Netrunner. Fantasy

Flight Games (cardgame), 2012.

Holm, Ivar, Ideas and Beliefs in Architecture and Industrial Design: How
Attitudes, Orientations, and Underlying Assumptions Shape the Built
Environment. Oslo, Norway: Oslo School of Architecture and Design,
2006.

Sharp, John, “Design Values.” November 12, 2015.
Thatgamecompany. Journey. Sony Computer Entertainment America, Inc.

(videogame), 2012.
Zimmerman, Eric. “Play as Research: The Iterative Design Process” in

Design Research: Methods and Perspectives. Ed. Brenda Laurel.
Cambridge, MA: The MIT Press, 2003.

Chapter 7
Llopis, Noel. “Indie Project Management for One: Tools,” Games from

Within. August 5, 2010. http://gamesfromwithin.com/indie-project-
management-for-one-tools. Accessed January 29, 2016.

Chapter 8
anthropy, anna. Queers in Love at the End of the World. (browser game),

2014.
Burnett, Rebecca, Brandy Blake, Andy Freeze, Kathleen Hanggi, and

Amanda Madden, WOVENText version 2.2. New York: Bedford St.
Martin’s, 2012.

Captain Games, Desert Golfing. Captain Games (iOS), 2014.
Hartnett, Tim. Consensus Decision-Making website.
Hunt, Jamer. “Among Six Types of Failure Only a Few Help You

Innovate.” Fast Company. June 27, 2011.
Kniberg, Henrik, “Spotify Engineering Culture (part 1).” Spotify Labs

website. March 27, 2014.
Kniberg, Henrik, “Spotify Engineering Culture (part 2).” Spotify Labs

website. September 20, 2014.

Chapter 9
anthropy, anna, dys4ia. Auntie Pixelante (browser game), 2012.

http://gamesfromwithin.com/indie-project-management-for-one-tools
http://gamesfromwithin.com/indie-project-management-for-one-tools

anthropy, anna, Rise of the Videogame Zinesters: How Freaks, Normals,
Amateurs, Artists, Dreamers, Drop-Outs, Queers, Housewives, and
People Like You Are Taking Back an Art Form. New York: Seven
Stories Press, 2012.

Atari, Inc. Breakout. Atari, Inc. (arcade), 1976.
Bell, Chris. “Designing for Friendship: Shaping Player Relationships with

Rules and Freedom.” Game Developers Conference 2012.
Cavanagh, Terry, vvvvvv. Distractionware (iOS), 2010.
Coco & Co., Way. Coco & Co (Macintosh), 2012.
Cooper, Alan, The Inmates Are Running the Asylum: Why High Tech

Products Drive Us Crazy and How to Restore the Sanity. Boston, MA:
Sams - Pearson Education, 2004.

Die Gute Fabrik, Johann Sebastian Joust. Die Gute Fabrik (PlayStation
3), 2013.

The Fullbright Company, Gone Home. Majesco Entertainment (Steam),
2013.

Granell, Craig. “The Weekend Read: How Canabalt Jumped from Indie
Game Jam to the Museum of Modern Art.” Stuff website, June 12,
2015.

IDEO, Design Kit.
Meadows, Donella. Thinking in Systems: A Primer. White River Junction,

VT: Chelsea Green Publishing, 2008.
Molleindustria, McDonald’s Videogame. Molleindustria (browser game),

2006.
Osborn, Alex F., Applied Imagination: Principles and Procedures of

Creative Problem-Solving. New York: Scribner, 1979.
Semi-Secret Software, Canabalt. Semi-Secret Software (iOS), 2009.
Thatgamecompany. Journey. Sony Computer Entertainment America, Inc.

(videogame), 2012.
Wilson, Douglas, Designing for the Pleasures of Disputation—or—How

to Make Friends by Trying to Kick Them! PhD dissertation, 2012.
Wilson, Douglas. “The Unlikely Story of Johann Sebastian Joust.” GDC

China 2012.

Chapter 10
Atari, Inc., Pong. Atari, Inc. (arcade), 1972.
Cancienne, Kevin, Dog Park. Kevin Cancienne (PC), 2014.
DeBonis, Josh, and Nikita Mikros, Killer Queen. Josh DeBonis and Nikita

Mikros (arcade), 2013.
DeBonis, Josh, and Nikita Mikros, “Swords and Snails: The Killer Queen

Story.” IndieCade East 2014.
Friedhoff, Jane, Slam City Oracles. Jane Friedhoff (Macintosh), 2015.
Harvey, Auriea. “The Making of Ruby.” The Path development blog,

March 10, 2008.
Local No. 12, Losswords. Local No. 12 (iOS), 2016.
Schüoenfelder, Lea, and Peter Lu, Perfect Woman. Lea Schüoenfelder and

Peter Lu (Macintosh), 2012.
Tale of Tales, The Path. Tale of Tales (Macintosh), 2009.
Thatgamecompany. Journey. Sony Computer Entertainment America, Inc.

(videogame), 2012.

Chapter 11
Cancienne, Kevin, Dog Park. Kevin Cancienne (PC), 2014.
Foddy, Bennett, FLOP. Die Gute Fabrik (PlayStation 3), 2013.
Hecker, Chris, Spy Party. Chris Hecker (PC).
Isbister, Katherine, How Games Move Us: Emotion by Design.

Cambridge, MA: The MIT Press, 2016.
Local No. 12, The Metagame. Local No. 12 (cardgame), 2015.

Chapter 13
anthropy, anna. Queers in Love at the End of the World. (browser game),

2014.
Beckett, Thomas, Worstward Ho. In Nohow On: Company, III Seen III

Said, and Worstward Ho. New York: Grove Press, 2014.
Bin, Astrid, PANIC!. Astrid Bin (browser game), 2012.

Cardboard Computer, Kentucky Route Zero. Cardboard Computer
(Steam), 2013–2014.

Esopus magazine.
Die Gute Fabrik, Johann Sebastian Joust. Die Gute Fabrik (PlayStation

3), 2013.
Die Gute Fabrik, Sportsfriends. Die Gute Fabric (PlayStation 4), 2013.
Local No. 12, The Metagame. Local No. 12 (cardgame), 2015.
Number None, Inc. Braid. Number None Inc. (Xbox 360), 2008.
Sharp, John. “How The Metagame Cards Went from a Sports Card-Like to

Dictionary Chic.” April 16, 2015.
Tale of Tales, Drama Princess. Tale of Tales (software), 2006.
Tale of Tales, The Endless Forest, Tale of Tales (PC), 2005.
Tale of Tales, The Path. Tale of Tales (Macintosh), 2009.
Wilson, Douglas, Designing for the Pleasures of Disputation—or—How

to Make Friends by Trying to Kick Them! PhD dissertation, 2012.

Glossary

AAA AAA, or “triple-A” games are games designed by large studios with
large budgets.
Absorption A state of player engagement to the extent that a game captures
a player’s complete attention.
Abstraction There are three forms of abstraction in games. Abstraction
applies when elements in the game don’t refer to anything in the world (for
example, Go). Abstraction can also refer to games that represent real-world
activities, such as how the game Pong represents tennis. Finally, there is the
abstraction in which a systems model is created to represent a real-world
phenomenon, such as the board game Pandemic’s abstraction of the spread
of diseases. Abstraction always involves some form of reinterpretation,
simplification, and modeling.
Achievers Based on Richard Bartle’s classification of players in online
MUDs (Multi-User Dungeons), achievers are interested in setting and
obtaining goals in a game.
Action Theory Talcott Parsons’ theory for what happens when people
interact with things. People have beliefs that shape their understanding of a
given situation, which lead to reactions, which lead to desires, around
which people create intentions, which finally lead to actions.
Actions The primary things players are doing in a game. Actions include
direct and indirect actions. Direct actions are those in which the player has
immediate interaction with objects and the playspace (the ball and flippers
in pinball), while indirect actions are those that occur without direct
contact by the player or the primary objects they use while playing (the
bumpers, ramps, and other features in a pinball machine).
Active Skill A form of skill-based play utilizing the player’s motor skills in
performing the actions in the game. Hitting the ball in tennis is an example.
See also Mental Skill.
Adaptive Processes An iterative approach to designing in which the
designer allows the design to develop based on the feedback on and
observations of interactions with a prototype. Adaptive processes differ

from predictive processes, in which design emerges from the designer
without external feedback.
Affective Conflicts One of three forms of conflict identified by Rebecca
Burnett’s WOVENtext. Issues arising in collaborative teams relating to team
members’ feelings, which in turn relate to their goals, needs, and wishes for
the project. Affective conflicts often emerge from differences in values,
which often derive from factors like gender, creed, culture, class, age, and
sexual orientation. See also Procedural Conflicts and Substantive Conflicts.
Affordances The theory explaining people’s innate understanding of what
we perceive an object is used for before using it. There are four kinds of
affordance: perceptible affordance, hidden affordance, false affordance, and
correct rejections.
Altgames A loose grouping of games and gamemakers that are connected
by a move away from genre and market considerations. Altgames tend to be
smaller and more experimental in their search for more expressive play
experiences.
Art and Sound Prototype A model of the sound and imagery in the game,
used to test and try out visual and audio approaches.
Asymmetrical Competition A multiplayer game where players are trying
to win against each other using different actions or objects.
Asymmetrical Cooperation A multiplayer game where players are
collaborating to win against the game and have different actions and
abilities.
Asymmetrical Information A form of play where players have access to
different information about the game’s state.
Asymmetrical Play A form of multiplayer play that gives players different
roles and abilities in the game.
Asynchronous Competition A game where players compete by comparing
their performance in a game played separately, and possibly at different
times. The long jump in track and field is an example where players take
turns jumping, and the distances are compared to determine winners.
Attention A player’s understanding of what is currently happening in a
game. There are two types of attention: reflexive and executive. Reflexive
attention is from the back and side regions of the brain and is activated
when loud noises, quickly moving objects, or anything novel is presented to

us. Executive attention (sometimes called voluntary attention) refers to
those things that we decide to pay attention to. Examples include looking at
a health meter, for instance, or reading a sign in the road.
Brainstorming A process developed by Alex Faickney Osborn meant to
generate many ideas around a specific question or problem. Brainstorming
has rules to guide the process: defer judgment, quantity over quality, no
buts (just ands), go wild, get visual, and combine ideas.
Challenge The resistance a game puts in the way of a player in their
attempt to achieve a goal, or through the difficulty of a game’s content or
subject matter.
Chance The introduction of randomness that impacts a player’s ability to
predict the outcome of direct and indirect actions.
Code/Tech Prototype Prototypes where the focus is on exploring questions
relating to the technology or production of a game.
Collaboration Working together toward the same goal. Given the complex
nature of game development, many games are designed and produced
collaboratively.
Competitive Play Play that pits players against each other, leading to
winners and losers.
Complete Game Prototype An almost final version of the game, with art
assets and most of the play experience in place. Complete game prototypes
allow a full review of a game’s design.
Conceptualize The first step in the four-step iterative game design cycle,
involving brainstorming and idea generation as well as identifying
motivations and design values.
Consistency In Gillian Crampton Smith’s five characteristics of well-done
interaction design, consistency provides players patterns from which they
can develop an understanding of how a game works and what their role is in
it.
Constraint For players, a way to make a play experience more difficult and
interesting, such as the no-hands rule in soccer. For designers, this is a form
of restriction on the game’s design—often leading to innovations within the
restrictions.
Context The time, place, and other environmental factors that impact the
quality of a play experience.

Cooperative Play A form of gameplay that emphasizes player collaboration
to meet the game’s goal. This can include symmetrical and asymmetrical
cooperative play.
Core Game Prototype A form of prototype that allows players to
experience the core actions, objects, and other central elements of a game.
Correct Rejections One of the four forms of affordances. Correct
rejections occur when people can determine what an object is not used for.
For example, a pillow won’t work as a hammer. See also Affordances.
Decision-Making The process by which a player evaluates their options
and the choices they make for their next action.
Design Document The primary written documentation for a game. Design
documents are used to share the specifics of how a game works.
Design Values The experiential goals set for a game. Design values are
guideposts used to ensure a game’s design stays focused throughout the
iterative process. They include experience, theme, point of view, challenge,
decision-making, skill, strategy, chance and uncertainty, context, and
emotions.
Direct Actions Actions that the player initiates and controls. Direct actions
differ from indirect actions, where objects in the game interact without
player control.
Dynamics The shifting relationships between elements in a system. The
outcomes of players and objects interacting in a game.
Emergent Play A term coined by Jesper Juul to understand player
experiences that take shape from within a designed set of rules. This is in
contrast to progressive play in which the player experience moves through
predetermined paths.
Evaluation The fourth step in the iterative game design process, wherein
the results of playtests of a prototype are used to identify strengths and
weaknesses in a game’s design.
Experience-Based Play A kind of play that emphasizes an exploratory,
sensory-based play experience.
Explorers Based on Richard Bartle’s classification of players in online
MUDs (Multi-User Dungeons), explorers like to understand the full breadth
of a game’s space of possibility.

Expressive Play A kind of play that de-emphasizes player choice and
instead emphasizes either authorial or player experience.
Failure A primary experience in games and game design. Failure reveals
the working relationships between things and is often how we learn. Jamer
Hunt identifies six types of failure: abject failure, structural failure, glorious
failure, common failure, version failure, and predicted failure.1

1 Jamer Hunt, “Among Six Types Of Failure, Only A Few Help You Innovate,” Fast Company
Design, 2011 (http://www.fastcodesign.com/1664360/among-six-types-of-failure-only-a-few-
help-you-innovate).

False Affordances One of the four types of affordances. False affordances
are misinterpretations of what an object can do. We see a wax apple and
think we might be able to eat it; we see a door in a 3D game but cannot
open it. See also Affordances.
Feedback The response a game provides to a player’s actions. One of
Gillian Crampton Smith’s five characteristics of well-done interaction
design.
Frame Layer In our play adaptation of Jesse James Garrett’s planes of user
experience, the player’s understanding of the game’s space of possibility
informed by their experiences as a player and more broadly as a person. See
also Sensory Layer, Information Layer, Interaction Layer, and Purpose
Layer.
Game Design The process of conceiving of and creating the way a game
works, including the actions, goals, rules, objects, playspace, and number of
players.
Game Development The overall process of making a game, including its
design and production.
Game Production The process of making a game as indicated by the
game’s design.
Game State The current moment in a game, including current time, score,
location of objects in the playspace, and other elements in flux due to player
actions and game reactions.
Goals The outcome players try to achieve through their play, whether they
are measurable or purely experiential. Sometimes goals are measurable and
determined by the game, but in other cases, goals are looser and open
ended.

http://www.fastcodesign.com/1664360/among-six-types-of-failure-only-a-few-help-you-innovate
http://www.fastcodesign.com/1664360/among-six-types-of-failure-only-a-few-help-you-innovate

Head-to-Head Competition Direct competition between players. Both
ping pong and basketball are examples of head-to-head competition.
Hidden Affordance One of four types of affordances. A hidden affordance
is an interaction that is present in an object but is not obvious from its
appearance. You wouldn’t realize you can drink from a hat, but you can;
you wouldn’t know a brick up in the air could be hit to release a coin, but it
will, sometimes. See Affordances.
Imperfect Information Not all of the game state is visible or accessible to
the player. Poker is a game of imperfect information, as players are exposed
to different information based on the cards in their hand.
Independent Games Games developed and published by individuals or
small teams.
Indirect Actions A tool of game design. Indirect actions are those that
occur without direct contact by the player or the primary objects they use to
perform actions.
Information Layer In our play adaptation of Jesse James Garrett’s planes
of user experience, the information the player discerns about the game via
the appearance. See also Sensory Layer, Frame Layer, Interaction Layer,
and Purpose Layer.
Information Space Games have information spaces that players explore.
Perfect information spaces are those in which everything to be known about
a game is visible to the player. Imperfect information spaces are those in
which some information is hidden from players either by the game itself or
by other players.
Interaction Layer In our play adaptation of Jesse James Garrett’s planes of
user experience, what the player understands he can do while playing the
game. See also Sensory Layer, Frame Layer, Information Layer, and
Purpose Layer.
Interactive Fiction The term used to describe text-based videogames
where player actions are carried out through either entering text commands
or selecting from text-based options.
Interface Prototype Interface prototypes explore the place where the
player comes in direct contact with the game.
Intuitiveness The ease with which a player can understand and perform
actions within a game. Intuitiveness is one of Gillian Crampton Smith’s five

characteristics of well-designed interactivity.
Iterative Design A process of creating games through the development and
testing of prototypes before the final design is developed. The steps in the
iterative design process are conceptualize, prototype, playtest, and evaluate.
Jump Cut A filmmaking term used to describe an edit without transition
from one shot to another. Jump cuts usually indicate a passage of time.
Killers In Richard Bartle’s classification of players in online MUDs (Multi-
User Dungeons), killers are interested in disrupting or destroying other
players or thwarting their attempt at achieving the goal.
Local Multiplayer Game A two or more player game where players
compete or collaborate with each other while sitting in the same space
together.
Lusory Attitude A term coined by Bernard Suits in the book The
Grasshopper: Games, Life and Utopia, describing the willingness of
players to submit themselves to arbitrary rules of a game to experience play.
Mental Model The way a player perceives a game to work, in terms of both
what they should do to play, but also what their actions mean within the
game’s space of possibility. From Gillian Crampton Smith’s five
characteristics of well-done interaction design.
Mental Skill A type of skill-based play utilizing the player’s ability to solve
problems and form strategies. See also Active Skill.
Motivations The designer or team’s point of emphasis for a game’s design.
Motivations include designing around the main thing the player gets to do,
designing around constraints, designing around a story, designing around
personal experiences, abstracting the real world, and designing around the
player.
Navigability The ability of a player to understand how to navigate through
the spatial, information, interaction, and goals of a game and its space of
possibility. Navigability is one of Gillian Crampton Smith’s five
characteristics of well-designed interactivity.
Non-Player Character Characters in a videogame controlled by the
computer.
Objects The things players use while playing a game. The ball or nets in
basketball are an example.

Paper Prototype A nondigital prototype, made of paper or index cards, that
tests ideas for a game.
Perceptible Affordances One of the four types of affordances. A
perceptible affordance is what a player assumes something does based on
what they can see, hear, or feel. See also Affordances.
Perfect Information Full access to the current state of the game, with
nothing hidden from the player.
Performative Play A play experience in which player actions are the
primary form. Performative play is often ideal for spectating.
Personas A tool for designing interactive software developed initially by
Alan Cooper in his book The Inmates Are Running the Asylum. Personas are
functional players that are based on the attributes we think our players will
have.
Physical Prototype A nondigital prototype that models the rules and
actions in a game. Physical prototypes are distinct from paper prototypes in
the sense that they usually model physical action over the information space
of the game.
Play As a noun, play is the act of experiencing a game. As a verb, play is
any activity that goes beyond the requirements of the moment.
Playable Prototype A digital prototype (if it’s a prototype for a videogame)
that allows players to experience the core actions of the game.
Play-Centric A form of game design that prioritizes the experiences players
have.
Player A person who interacts with a game.
Player Character The onscreen representation of the player.
Playspace The designed space within which a game is played.
Playtest The third step in the iterative game design cycle: observing how a
prototype operates when played. Playtests can be internal tests, game
developer tests, friend tests, target audience tests, new player tests, and
experienced player tests.
Predictive Processes A design process by which the final product is well
understood and can be produced without having to make changes to its
design from testing. Predictive processes assume the designer is going to be
right the first time around in contrast with adaptive processes, which are

iterative processes that leave room for error, but also new ideas that can
improve upon the original.
Procedural Conflicts One of three forms of conflict identified by Rebecca
Burnett in her book WOVENtext. Procedural conflicts relate to
misunderstandings or disagreements on the processes through which a team
collaborates. See also Affective Conflicts and Substantive Conflicts.
Progression Jesper Juul’s concept of games of progression are those in
which the player makes decisions, but all possible outcomes are already
defined by the game’s creators. While this approach provides less open-
ended play, it provides richer, authored storyworlds to investigate.
Prototyping The second stage in the iterative cycle, involving making a
tangible version of the game or some aspect of it. Types of prototypes
include paper, physical, playable, art, sound, interface, code/tech, core
game, and complete game.
Pseudocode Code written in no specific syntax that models the logic of a
program.
Purpose Layer In our play adaptation of Jesse James Garrett’s planes of
user experience, the purpose layer is the player’s goals for the game. See
also Sensory Layer, Frame Layer, Information Layer, and Interaction Layer.
Role-Playing A form of play that enables players to inhabit and perform as
a character.
Rules The instructions for how a game works.
Schematics Blueprints for the game showing the basics of how a game
looks to help explain what it will be like to play and what needs to be built.
Second-Order Design Designing games is a second-order design activity
because we create the play experience indirectly through a combination of
rules, actions, and goals. The game only takes form when activated by the
player.
Sensory Layer In our adaptation of Jesse James Garrett’s planes of user
experience, the sensory layer is the surface of a game, or what the player
sees, hears, and feels when playing the game. See also Frame Layer,
Information Layer, Interaction Layer, and Purpose Layer.
Simulation-Based Play A form of play that models a real-world system.
Skill The measurement of a player’s mastery of a game’s actions.

Socializers In Richard Bartle’s classification of players in online MUDs
(Multi-User Dungeons), socializers are interested in interacting with other
players over anything else in the game.
Space of Possibility Because games are interactive, they provide players
with a variety of possible actions and interpretations. While a designer can’t
predetermine all of the possible actions and experiences players will have,
they can limit or open up the space of possibility through the game’s
combination of actions, rules, goals, playspace, and objects.
Story Beat Important moments in a story. Jack and Jill running up the hill
is one of a number of story beats that together compose the folk tale of Jack
and Jill.
Storyworlds Spaces within which players inhabit characters and carry out
actions via their avatars, designed to embody the place, setting, and time of
the game.
Strategy A player’s theory for how to best play a game and achieve goals
(either those of the game or of the player’s).
Substantive Conflicts One of three forms of conflict identified by Rebecca
Burnett’s book WOVENText. This may include team conflicts relating to the
game itself—things like what kind of game it is and what kind of
experience the team wants to provide players. These conflicts can help
teams arrive at an understanding of the game together. See also Affective
Conflicts and Procedural Conflicts.
Symbiotic Cooperation Play situations in which players are reliant on one
another to play a game and achieve goals established either by the game or
by the players themselves.
Symmetrical Competition A form of Competitive Play that provides the
same abilities, roles, and challenges to each player.
Symmetrical Cooperation A form of Cooperative Play that provides the
same abilities, roles, and challenges to each player.
Symmetrical Information All players have access to the same information
about the state of the game.
Systems Dynamics An approach to understanding how things work by
seeing them as objects that interact toward a particular purpose.
Team Agreement Team agreements spell out how the team is going to
interact, how decisions are made, how ownership of the game is handled,

and many other important elements of collaborations between individuals.
Theme The logical framework for how a game is represented.
Tracking Spreadsheet A document that captures the big-picture and
moment-to-moment tasks necessary to design, prototype, and playtest a
game.
Turn-Based Play Play that involves waiting for each player to decide on
and execute their actions.
Uncertainty The unpredictable nature of what will happen when a game is
played.
Whimsical Play Whimsical play emphasizes silly actions, unexpected
results, and creating a sense of euphoria by generating dizziness and a play
experience that you need to feel to understand.
Yomi The Japanese concept for knowing the mind of your opponent. It’s
usually applied to one-on-one competition but can also be found in sports,
where one team analyzes the other team’s past plays to predict future
actions, all in service of gaining strategic advantage.

Index

A
Abe, Kaho, 62
Abject failure, 158, 159
Abstract strategy game, chess as, 37
Abstraction

defined, 45
in games designed from personal experience, 175
paper prototypes as, 184–186
in simulation-based games, 73–74
of system in real world, 176–177
as tool of game design, 35–37

Achievers, player type, 99
Act, “Plan-Do-Study-Act” iterative design model, 106–107
Action outcome unit, 31–32, 79
Action theory, 78–80, 101
Actions

abstracting system in real world using, 176–177
as basic element of game design, 7–8
crafting to create play, 10
creating space of possibility through, 11–12
deciding main thing player gets to do, 171–172
focusing on play experience, 183
physical prototypes capturing, 187–188
playable prototypes modeling player, 188–190
playtester feedback on, 220

Active skills, in skill-based play, 55–56
Adaptive processes, in iteration, 106
Adjective brainstorms, 169–170
Adjectives

describing main thing player gets to do, 171

designing game around story, 175
Aesthetic design values, 118
Affective conflicts, resolving in team collaboration, 157
Affordances

in Braid, 92–93
overview of, 101–102
player interaction and, 91–92

Agenda, team meeting, 155
Agreements, team, 153–154
Alabaster, 81
Alignment, balancing autonomy in team with, 151–152
Allen, Shawn, 18–19
Analogue: A Hate Story, 57–58
Android: Netrunner

asymmetric information space of, 89
developing design values for Consentacle, 127
imperfect information space of, 88–89
mental skill in chance-based context of, 60–61

Angle, choosing game, 170
Angry Birds, 50–51, 124–126
Anthropy, anna. See Queers in Love at the End of the World
Apache Subversion (SVN), collaboration tool, 154–155
Applied Imagination (Osborn), 165–166
Art and sound prototypes, 190–192, 199
Art direction

in design document, 136, 137
knowing when design is done, 235
team roles for, 150

Art implementation, team roles for, 151
The Art of Failure (Juul), 96
Asset list sheet, tracking spreadsheets, 146
Asymmetric information space, 89
Asymmetrical competition, 52

Asymmetrical cooperative play, 54
Asynchronous communication, 155
Asynchronous competition, 50–51
Attention

defined, 101
defining player understanding, 86
designing information layer, 90
executive (voluntary), 86–87
reflexive, 86

Attribution theory, kinds of failures in, 96
Autobiographical, designing game around personal experience, 175
Autonomy, balancing alignment of team with, 151–152

B
Bartle, Richard, 99–100
Basketball

in Flywrench, 17
intuitiveness in, 95
perfect information space of, 90
played by killers/socializers, 100
skill, strategy, and uncertainty in, 30

Beliefs, in cycle of action theory, 78
Bell, Way, 164
Bicycles, decision-feedback and, 31
Blackjack, chance and uncertainty in, 58
Blueprints

game design, 110
schematics similar to, 141–142

Braid
affordances in, 92–93
storyworld in, 40–42

Brainstorming
in conceptualization phase of iterative cycle, 110, 165–166

“how might we” brainstorms, 167–169
idea speed-dating brainstorms, 166–167
noun-verb-adjective brainstorms, 169–170
solutions to your design, 223

Brandenburg Concertos, in Johann Sebastian Joust, 172
Breakout, using constraints, 173
Burke, Liam, 22, 42

C
Canabalt, 49–51, 174
Candy Land, 61
Cavanaugh, Terry, 172–173
Centipede, played by achievers, 99
Challenge

capturing game motivations, 179
defined, 45
design document for, 135, 136
design values for, 119, 129
designing constraints for, 173, 174
playtester feedback on design values, 220
Pong design for, 120
in skill-based play, 55–56
as tool of game design, 25–28

Chance, games of
defined, 75
overview of, 58–61
as tool of game design, 28–31, 45

Charades, performative play, 68
Chen, Jenova, 122–124
Chess

as abstract strategy game, 37
approach to theme, 38
decision-feedback loops of, 32

perfect information on game state in, 88
Circumstantial flaws, failure from, 95–96
Clark, Naomi, 126–128
Cloud-based document sharing, 154
Code, knowing when design is done, 235
Code prototypes, 194–195, 199
Coffee: A Misunderstanding, performative play, 68–70
Collaboration and teamwork

agreements, 153–154
balancing alignment and autonomy, 151–152
developing design values for Consentacle, 128
overview of, 150
resolving differences, 157–158
roles and responsibilities, 150–151
running meeting, 155–156
soft skills of, 156–157
summary, 159
time and resources, 152–153
tools for, 154–155
understanding failure, 158–159

Collaborative yomi, 128
Combine ideas, brainstorming rule, 166
Common failure, 159
Communication, collaboration tools for, 155
Competition against the machine, 51
Competitive play

defined, 75
designing constraints for, 174
overview of, 48–52

Complete game prototypes
defined, 200
knowing when design is done, 234
overview of, 197–198

Completed tasks sheet, tracking spreadsheets, 147
Completists, achievers as, 99
Conceptual absurdity, whimsical play, 75
Conceptualizing your game

brainstorms, 165–166
as first phase in iterative process, 164
generating ideas, 164–165
“how might we” brainstorms, 167–169
idea speed-dating brainstorms, 166–167
in iterative game design process, 108
motivations. See Motivations
noun-verb-adjective brainstorms, 169–170
overview of, 109–110
solutions, after playtester feedback, 222–224
summary, 180

Concurrent Version Systems (CVS), as collaboration tool, 154–155
Conflict, resolving team, 157–158
Consensus-based decision-making, 152
Consentacle card game, design values, 126–128
Consistency, of well-designed interactivity, 95
Constraint

defined, 44
design depending largely on, 173
designing game around, 172–174
developing design values for Consentacle, 128
as tool of game design, 16–19
in whimsical play, 63–64, 75

Context
capturing game motivations with, 179
design documents for, 135, 137
design values for, 120, 121, 129

Context of play, 43–45
Conversations We Have in My Head, story as play experience, 42–43

Cooper, Alan, 178
Cooperative play

asymmetrical, 53
defined, 75
designing constraints, 174
symbiotic, 55
symmetrical, 54

Core game prototypes, 195–197, 200
Correct rejections, role of affordances, 91
Cosmicat Crunchies, 194
Crampton-Smith’s five characteristics of well-designed interactivity, 93–95,
102
Csikszentmihalyi, Mihaly, 25
CVS (Concurrent Version Systems), as collaboration tool, 154–155

D
Data, turning into information, 86
Deadbolt, expressive play in, 71–72
Deadlines, getting ready for production, 236–237
Dear Esther, 10–11, 57–58
DeBonis, Josh, 187–188
Decision-feedback loops

defined, 45
purely chance-based games removing, 61
as tool of game design, 31–35

Decision-making
capturing game motivations with, 179
consensus-based, 152
in design documents, 135, 137
design values for, 119, 120, 128, 129
designing around constraints, 174
establishing protocols for, 154
playtester feedback on design values, 221

for solutions to your design, 223
in team meetings, 155
in turn-based games, 88–89

Defer judgment, brainstorming rule, 165
Desert Golfing, 50–51, 124–126
Design documentation

defined, 148
design documents, 132–136
exercise, 148
file sharing for collaboration, 154–155
in iterative game design, 132
knowing when design is done, 235
overview of, 132–136
Pong example of, 136–138
schematics, 142–143
solutions to your design, 223
summary, 147
tracking spreadsheets, 143–147
of your prototypes, 198–199

Design values
balancing team alignment/autonomy, 152
capturing game motivation, 179–180
in conceptualization phase of iterative cycle, 110
in Consentacle, 126–128
creating playable prototypes, 190
in Desert Golfing, 124–126
exercises, 129
in game design document, 135, 136
generating, 119–120
in Journey, 122–124
knowing when design is done, 235
overview of, 118–119
in The Path case study, 230–232

playtester feedback on, 218, 220–221
in Pong, 120–121
resolving team conflicts via, 158
reviewing after playtest results, 222
summary, 128

Designs, in game design document, 132
Desire, in action theory, 78
DIKW (Data-Information-Knowledge-Wisdom) model

feedback providing, 94
information layer, 86
interaction layer, 91

Direct actions, as tool, 19–21, 44
Dishonored, played by achievers, 99
Distribution voting, idea speed-date brainstorms, 167
Do, “Plan-Do-Study-Act” iterative design model, 106–107
Documentation. See Design documentation
Dog Eat Dog

outcomes or goals in, 22–24
played by killers, 100
storytelling emerging from play experience, 42–43

Dog Park, complete game prototype, 197–198
Dreyfuss, Henry, 107
Drop7

consistency in, 95
feedback system in, 94
intuitiveness in, 95
navigability in, 94

Dropbox, as collaboration tool, 154
Drunk Jenga, designing for context, 43
Dungeons & Dragons, played by socializers, 100
dys4ia, designed around personal experience, 175–176

E
Eames, Ray and Charles, 173
Elements

basic play design, 7–9
in game design document, 134–136, 137
wireframing showing changes in game, 139–140

The Elements of User Experience (Garrett), 79–80
Emotions

capturing game motivations with, 179
as design value, 120–123, 129
listing in design document, 135, 137
playtester feedback on, 221
playtesting The Path, 230–232
resolving affective conflicts in team, 157

The Endless Forest, 230
Entertainment media, games treated as, 4
Environmental design values, 118
Esopus art magazine, and Metagame, 227
Evaluate, Dreyfuss iterative design model, 107
Evaluating your game

conceptualizing solutions, 222–224
interpreting observations, 221–222
in iterative design process, 108, 113–114
overview of, 218
reviewing playtest results, 219–220
schedule next prototype, 224
what to think about, 220–221

Executive (or voluntary) attention, 86–87
Expectations, providing player, 96–97
Experience-based play, 57–58, 75
Experience, player

absorption in, 26
action theory principles and, 78–80

capturing game motivations with, 179
design document for, 135–136
design values for, 119, 120, 129, 135
exercises, 102
of flow, 25–26
focusing game on, 182–183
frame layer of, 96–98
game design elements creating, 9–11
goals guiding, 24
information layer of, 85–91
inspiring ideas for games, 164–165
interaction layer of, 91–96
overview of, 77
playtester feedback on, 218, 220–221
purpose layer of, 99–100
sensory layer of, 80–85
summary, 101–102
theme shaping, 37

Experienced player tests, 209, 216
Explorers, as player type, 99–100
Expression, games generating, 6
Expressive play, 71–72, 76, 183
Exquisite Corpse, 9–10
External playtests, 113

F
Failure

of collaboration, 158–159
embracing to succeed in iterative process, 115–116
kinds encountered in gameplay, 95–96
as part of iterative process, 112

False affordances, 92
Far Cry 2, played by achievers, 99

Feedback
abstracting system in real world and, 176–177
consistency, and player understanding of, 95
creating core game prototypes after, 196
evaluating playtester, 113–114, 218, 221
navigability related to, 95
in playtest phase in iterative cycle, 112
reviewing playtest results, 219–220
supporting mental model of game, 93
in well-designed interactivity, 94

Feelings, and expressive play, 71–72
File sharing, as collaboration tool, 154–155
Film scripts, and game design documents, 132–133
First-person perspective, 80–81, 83–84
Flanagan, Mary, 118, 119
Flaws in game, failure in gameplay from, 95–96
Flow state, challenge of player’s skill level, 25
Flywrench, constraint in, 16–17, 19
Foddy, Bennett, 62–63
For discussion sheet, tracking spreadsheets, 145, 155
Force, Kris, 191–192, 230, 232
Frame layer, 79–80, 96–98
Friedhoff, Jane, 22, 100, 196–197
Friend and family tests, 206–207, 215

G
Game design documentation. See Design documentation
Game developer tests, 205–206, 215
Game flow, game design document, 135, 137–138
Game of Life boardgame, abstraction, 35
Game state, 12, 14
Games of emergence, 66
Games of progression, 67

Garfield, Richard, 60
Gender-based design values, 118, 126–128
Get visual, brainstorming rule, 166
Gilliam, Leah, 65–66, 100
Glorious failures, 158, 159
Go boardgame, abstraction in, 35
Go wild, brainstorming rule, 166
Goals

achievers setting/obtaining, 99
as basic element of game design, 8
of brainstorming, 166
of cooperative play, 53
crafting to create play, 9
creating game’s space of possibility, 11–12
defined, 13, 45
establishing with team to build trust, 152
evaluating when making prototype, 183
in game design documents, 135, 136
playtest phase in iterative cycle, 112
playtester feedback on design values, 220
reaching via challenge, 25–28
relating navigability to player, 94
team agreements to establish, 153
of team meetings, 155–156
as tool of game design, 22–24

Gone Home, storyworld in, 41–42, 174–175
Google Drive, as collaboration tool, 154

H
Hanabi cardgame, 127–128
Harvey, Auriea, 191, 230–232
Head-to-head competition, Nidhogg, 51
Hecker, Chris, 52, 208–209

Hentai, 126–127
Hidden affordances, 92
Hit Me, as whimsical play, 62–64
Holm, Ivar, 118–119
Hopscotch board, 4–6
“How might we” brainstorms, 167–169, 180
Howling Dogs

decision-feedback loops in, 34–35
role-playing in, 67–68, 101

Hugpunx, point of view/perception in, 82–83
Hunt, James, 158

I
Idea speed-dating brainstorms, 166–167, 180
Ideas

conceptualization phase of iterative cycle, 109–110
conceptualizing game. See Brainstorming
designing around story, 175
evaluating when making prototype, 183
evolving in every step of iterative process, 111, 114
in expressive play, 71–72
team meetings for, 155
turning into prototypes, 182

Image-editing software, for interface prototypes, 194
Images, game design via schematics, 138–142
Immediate tasks, overview spreadsheets for, 143–144
Imperfect information spaces, 88–89, 101
Incubation, conceptualizing design solutions, 222–223
Indirect actions, 19–21, 44
Individual flaws, failure from, 95–96
Information layer, 79–80, 85–91
Information spaces

defined, 101

overview of, 88–90
playtester feedback on design values, 221

The Innmates Are Running the Asylum (Cooper), 178
Intention, in action theory, 78
Interaction layer

clear mental model in, 93
consistency in, 95
failure and, 95–96
feedback in, 94
intuitiveness in, 95
navigability in, 94–95
as plane of user experience, 79–80
use of affordances in, 91–93

Interactive fiction, in Alabaster, 82
Interface and controls, game design documents, 135, 137
Interface prototypes, 193–194, 199
Internal playtests

defined, 113, 215
overview of, 203–205

Intuitiveness, well-designed interactivity, 95
Iterative game design process

collaboration. See Collaboration and teamwork
conceptualization, 109–110
documentation. See Game design documentation
embracing failure in, 115–116
evaluation, 113–114
exercise, 116
knowing when design is done, 234–235
origins of, 106–108
in play design, 10
playtests, 112–113
prototypes, 110–111
as repeated process, not single cycle, 114–115

summary, 116

J
Jarboe, 191–192, 230, 232
Jenga Classic, 43
Jenga Giant, 43
Johann Sebastian Joust

from design to production, 228–230
main thing player gets to do in, 171–172
performative play in, 68–70
played by killers, 100
symmetrical competition in, 51

Journey
activating player attention in, 86–87
design values of, 122–124
early playable prototype of, 188–190
as hard game for most people to play, 85
navigability in, 94
physical prototyping of, 188
player point of view and perception in, 84–85

Jump cuts, in Journey, 86–87
Juul, Jesper, 66, 96

K
Kentucky Route Zero, 39–40, 101
Killer Queen, 187–188
Killer Queen Field Game, 187–188
Kinds of play

competitive, 48–52
cooperative, 53–55
exercises, 75
experience-based, 57–58
expressive, 71–72
games of chance and uncertainty, 58–61

overview of, 48
performative, 68–70
role-playing, 65–68
simulation-based, 72–74
skill-based, 55–56
summary, 74–75
whimsical, 62–65

Kinect, testing code/tech prototypes, 194–195
Kinetic aspects of game, in physical prototypes, 187
Knizia, Reiner, 115

L
Landlord’s Game, simulation-based, 72
Layers of play experience

defined, 101
frame layer, 96–98
information layer, 85–91
interaction layer, 91–96
purpose layer, 99–101
sensory layer, 80–85

Leacock, Matt, 34, 54
Lesperation: Trouble in Paradise, 65–68, 100
Level design, game design document, 136
Listening skills, resolving affective team conflicts, 158
Little Red Riding Hood, The Path based on, 66–68, 191
Living documents, design documents as, 134
Local multiplayer games, 48
Long-range tasks, overview spreadsheet tracking, 143–144
Losswords, 189–190, 193
Lu, Peter, 27, 97, 194–195
Ludum Dares, 232
Luftrausers, 196–197
Lusory attitude, 16–18, 26

M
Markers

creating paper prototypes, 185–186
for “how might we” brainstorms, 169

Marketing/public relations, team roles for, 151
Massively Multiplayer Online games (MMOs), 122
McDonald’s Videogame

as abstraction of system in real world, 177
player role and experience in, 101
as simulation-based play, 73–74

Meadows, Donella, 176
Meetings, team

getting ready for production, 236–237
running, 155–156
soft skills of collaboration in, 156–157
when and how for, 154

Member status, defining team, 153
Mental model, clear

interaction layer requiring, 91
navigability relating to, 95
in well-designed interactivity, 93

Mental skill, 55–56, 61
Metagame case study, 226–228
Mid-range tasks, overview spreadsheets for, 143–144
Mikros, Nik, 187–188
Milestones. See Tracking spreadsheets
Minecraft

endless space of possibility in, 11–12
played by achievers, 99
self-directed goals in, 8

MMOs (Massively Multiplayer Online games), 122
Monopoly, as simulation-based play, 72
Moodboards, as early art prototypes, 192

Motivations
abstracting real world, 176–177
as angle for game’s design, 170
in conceptualization phase of iterative cycle, 170
design values capturing, 179–180
designing around constraints, 172–174
designing around personal experiences, 175–176
designing around player, 178
designing around story, 174–175
designing around the thing the player gets to do, 171–172

Music, playing games vs. playing, 4
My Moon film, 133, 140

N
Narrative

in Alabaster, 82
in Braid, 41
creating challenge through, 25
designing, 151
in Howling Dogs, 67
in Journey, 123
in Kentucky Route Zero, 39
in Perfect Woman, 195
as possible focus of game, 170
in Queers in Love at the End of the World, 71, 233
in storytelling. See Storytelling

Navigation
of 3D space to experience story, 57–58
in Journey, 85
story emerging through, 42
in Thirty Flights of Loving, 84–85
in well-designed interactivity, 94–95

New playertests, 208–209, 216

Nidhogg, 33–34, 48–49
Ninja folkgame, 26, 58
Nissenbaum, Helen, 119
No buts (just ands), brainstorming rule, 166
Nonplayer characters, 52
Norman, Donald, 91
Note-taking, in team meetings, 155
Noun-verb-adjective brainstorms

creating paper prototypes, 185
defined, 180
overview of, 169–170

O
Objects

as basic element of game design, 8–9
crafting to create play, 9–11
creating space of possibility, 11–12
defined, 13

Observations
interpreting playtests, 221–222
playtester feedback on design values, 220–221
reviewing playtest results, 221

Octodad, constraint in, 17–19
Ongoing responsibilities sheet, tracking spreadsheets, 146
Osborn, Alex F., 165–166
Outcomes

designing game around story, 175
direct/indirect actions creating unexpected, 21

Overview sheet, tracking spreadsheets, 143–144
Ownership, game, 153

P
Pachinko, uncertainty in, 29
Pandemic

abstraction in, 35–36
asymmetrical cooperative play in, 54
storyworld in, 40

PANIC! 232
Paper prototypes, 184–186, 199
Papers, Please, as simulation-based play, 73–74
Participation expectations of team, 153
The Path

art and sound prototypes of, 191–192
from design to production, 230–232
played by achievers, 99
role-playing in, 66–68

Pedercini, Pablo, 177
Perceptible affordances, 91, 93
Perfect information spaces

of basketball, 90
of chess, 88
defined, 101

Perfect Woman
challenge in, 27–28
frames in, 97–98
tech prototype of, 194–195

Performative play, 68–70, 76
Personal experience, designing game around, 175–176
Personas, designing game around player, 178
Perspective, as angle from which story is told, 170
Physical prototypes, 187–188, 199
Physical silliness, whimsical play, 64
Pinball, direct/indirect actions in, 19–20
Ping! paper prototype of, 184–186
“Plan-Do-Study-Act” iterative design model, 106–107
Play design

active role of player, 4–5

basic elements of, 7–9
exercises, 14
games as entertainment media, 4
getting from here to there, 12–13
summary, 13–14
systems dynamics approach to, 5–6
using elements of, 9–12
what it means to play, 4

Playable prototypes
core game prototypes vs., 195–197
defined, 199
overview of, 188–190

Player experience. See Experience, player
Players

as basic element of game design, 9
beyond types of, 102
crafting to create play, 9–11
creating space of possibility, 11–12
deciding main thing done by, 171–172
defined, 13
designing game around, 178
designing game around constraints on, 172–174
making game come to life, 6
role in game play, 4–5
types of, 99–100, 102

Playspaces
as basic elements of game design, 9
crafting to create play, 9–10
creating space of possibility, 11–12
defined, 13

Playtesting your game
after, 213–214
experienced player tests, 209

friend and family tests, 206–207
game developer tests, 205–206
input vs. feedback and, 214–215
internal tests, 203–205
matching prototypes to, 209–210
new playertests, 208–209
overview of, 202–203
preparing for, 210–211
revealing truth about your design, 201
running, 211–213
summary, 215–216
target audience tests, 207–208

Playtests
creating core game prototypes after, 196
decision-making in team meetings on, 155
embracing failure, 115–116
evaluating feedback, 113–114, 218
file sharing plans for collaboration, 154–155
in iterative game design process, 108
knowing when design is done, 235
overview of, 112–113
reviewing results of, 219–220
tracking task list sheet for, 145

Point of view
abstraction of systems in real world and, 176–177
capturing game motivations with, 179
design values for, 119, 120, 129
designing game around story, 175
in game world, 80–85
listing in design document, 135, 136
questions asked by designers on, 85

Poker, chance and uncertainty in, 30, 58
Pong

abstracting tennis in, 35
design values in, 120–121
game design document for, 136–138
schematics, 138–142

Portal 2
active and mental skills in, 56
played by socializers, 100
symmetrical cooperative play in, 53

Possibility space. See Space of possibility
Post-it notes, “how might we” brainstorms, 168–169
Predicted failures, 159
Predictive processes, 106
Procedural conflicts, resolving in team, 157
Production, moving from design to

getting ready for production, 236–237
how to know when design is done, 234–235
Johann Sebastian Joust case study, 228–230
Metagame case study, 226–228
overview of, 226
The Path case study, 230–232
Queers in Love at the End of the World case study, 232–234

Programming, team roles for, 150
Project management, team roles for, 151
Proteus, 21, 99
Prototypes

asset list sheet for, 146
decision-making in team meetings on, 155
evaluating your game. See Evaluating your game
in iterative game design process, 107–108, 110–111
knowing when design is done, 234–235
overview spreadsheet tracking, 143–144
tracking task list sheet for, 145

Prototyping your game

art and sound prototypes, 190–192
code/tech prototypes, 194–195
complete game prototypes, 197–198
core game prototypes, 195–197
documenting prototypes, 198–199
interface prototypes, 193–194
paper prototypes, 184–186
physical prototypes, 187–188
playable prototypes, 188–190
prototypes as playable questions, 183–184
scheduling next prototype, 224
as second step in iterative process, 181–183
summary, 199–200

Purpose layer, 79–80, 99–100

Q
Quantity over quality, brainstorming rule, 165–166, 169
Queers in Love at the End of the World

from design to production, 232–234
expressive play in, 71–72
played by achievers, 99
space of possibility in, 11–12

Quest 3D, playtesting The Path, 230–231
QWOP, as whimsical play, 63–64

R
Reaction, in action theory, 78
Real-time game

basketball as, 90
game state in constant flux in, 12
Speed Chess as, 32–33

Real-world system
abstracting in games, 176–177
noun-verb-adjective brainstorming for, 169–170

Reflexive attention, player understanding of game, 86
Remote communication, as collaboration tool, 155
Repeat, in action theory, 78
Requirements, iterative game design process, 107
Resolving differences, in collaboration, 157–158
Resources, in collaboration, 153
Responsibilities, in collaboration, 150–151
Review

design strengths/weaknesses after playtest, 222
in iterative game design process, 107

Revise, in iterative game design process, 107
Rise of the Videogame Zinesters book (anthropy), 165
Role-playing, 65–68, 75
Roles

balancing team alignment and autonomy, 151–152
collaboration, 150–151
team agreements to establish, 154

Rollercoaster Tycoon, simulation-based play, 72
Roulette, 29
Rules

for abstraction of systems in real world, 176–177
as basic element of game design, 8
brainstorming, 165–166
crafting to create play, 9–12
defined, 13
in Desert Golfing design values, 125
in game of Dog Eat Dog, 23
for space of possibility, 11–12

Running meetings, 155–156

S
Salen, Katie, 11, 31
Saltsman, Adam, 174

Samyn, Michaël, 191, 230–232
Scheduling next prototype, 224
Schematics

defined, 148
documenting for your prototype, 198
file sharing for collaboration, 154–155
integrating into game design document, 142
interface prototypes using, 193
in iterative game design, 132
paper prototypes and, 184
replacing game design document with, 143
showing game flow, 135
visualizing game design, 138–142

Schönfelder, Lea, 27, 97, 194–195
Second-order design, 10–12, 14
Sensory layer

information layer helping players understand, 85–91
overview of, 80–85
as plane of user experience, 79–80

Shewhart, Walter, 106–107
Short-range tasks, tracking with overview spreadsheet, 143–144
Show, Dreyfuss iterative design model, 107
Silent brainstorms, 168–169, 170
Sim City, as simulation-based play, 72
Simulation-based play, 72–74, 76
Single-player games

competition in, 49–50
Journey design values as, 123
Portal 2 played as, 53

Sketch, Dreyfuss iterative design model, 107
Skill-based play, 55–56, 75
Skill, strategy, chance, and uncertainty

capturing game motivations, 179

capturing game motivations with, 179
defined, 45
design document for Pong, 137
design values for, 120–121, 129, 135
overview of, 28–31
in Threes, 59

Skills
challenge increasing player, 25–28
soft skills of collaboration, 156–157

Skype, creating playable prototype with, 189–190
Slam City Oracles

creating core game prototype, 196–197
goals in, 22
played by socializers, 100

Smith, Justin, 124–126
Soccer

challenge in, 27
constraint in, 16
elements of play design in, 7–9
as example of quantifiable goal, 22

Social design values, 118, 119
Soft skills, collaboration, 156–157
Software requirement specifications, game design documents and, 133–134
Sound prototypes, 190–192
Sound, team roles for designing, 151
Space of possibility

concept of, 11–12
defined, 14
game state letting player understand, 12

Speed Chess, 32–33
Spelunky, 99, 100
Spreadsheets

production, 236

tracking, 143–147
Spy Party, asymmetrical competition in, 52
Squinkifer, Dietrich, 42, 68–70
Story beat, Alabaster, 82
Storyboards, using schematics like, 140
Storytelling

defined, 45
designing game around, 174–175
role-playing in, 65–68
as tool of game design, 40–42

Storyworlds, games constructed around, 40
Strategy

with chance and uncertainty, 61
defined, 45
as tool of game design, 28–31

Structured failure, 158
Study, “Plan-Do-Study-Act” iterative design model, 106–107
Substantive conflicts, resolving in team, 157
Suits, Bernard, 16, 26
SUNBURN! direct/indirect actions in, 20
Sunset, layered goals in, 24
Super Mario Bros., 91, 174
Super Meat Boy, active skills in, 55
SVN (Apache Subversion), collaboration tool, 154–155
Sweat equity, making games by, 153
Symbiotic cooperation, 55
Symmetrical competition, 51
Symmetrical cooperative play, 53
Symmetrical information space, 90
Systems

abstraction of in real world, 176–177
definition of, 176

Systems dynamics, approach to game design, 5–6

T
Takahashi, Keita, 62, 64
Takeaways, reviewing playtest results, 219–220, 221
Talking rights

running team meetings, 155
soft skills of collaboration, 156–157

Target audience tests, 207–208, 216
Task list sheet, tracking spreadsheets, 145, 148
Tasks

collaboration tools for managing workflow, 155
participation expectations of team, 153
tracking on spreadsheets. See Tracking spreadsheets

Teamwork
brainstorming using idea speed-date, 166–167
collaboration and. See Collaboration and teamwork

Tech prototypes, 194–195, 199
Technical overview, game design document, 136, 137
Technology

designing game around constraints, 174
testing with code/tech prototypes, 194–195

Tennis, abstracting in Pong, 35
Tenya Wanya Teens, as whimsical play, 64–65
Terms of agreement, 154
Testing, team roles for, 151
Tetris, intuitiveness in, 95
Text-based games

Alabaster, 81–82
Analogue: A Hate Story, 57–58
Howling Dogs, 34–35, 67–68
Losswords, 189–190, 193
Queers in Love at the End of the World, 11–12, 71–72

Text, knowing when design is done, 235
Art of Failure (Juul), 96

Theme
capturing game motivations, 179
defined, 45
in design document, 135–136
design values for, 119–120, 129, 135
designing game around story, 175
embedded in storytelling, 40–42
as tool of game design, 37–40

Think, Dreyfuss iterative design model, 107
Third-person over-the-shoulder perspective, 80–81
Thirty Flights of Loving, 83–85
3D first-person view, of game world, 81
Threes

decision-making in, 61
played by explorers, 100
strategically managing uncertainty in, 59

3D third-person view, of game world, 81
Time

collaboration and, 152–153
participation expectations of team, 153

Tiny Games, designing for context, 43–44
Titles, in game design document, 134–135, 136
Tools, game design

abstraction, 35–37
challenge, 25–28
collaboration, 154–155
constraint, 16–19
context of play, 43–44
decision-making and feedback, 31–35
direct and indirect actions, 19–21
exercises, 45
goals, 22–24
skill, strategy, chance and uncertainty, 28–31

storytelling, 40–42
summary, 44–45
theme, 37–40

Tracking spreadsheets
asset list sheet, 146
completed tasks sheet, 147
discussion sheet, 145
ongoing responsibilities sheet, 146
overview of, 143–147
overview sheet, 143–144
role in iterative game design, 132
task list sheet, 145

Tracking tools, collaboration, 154–155
Traditional design values, 118
Train, frames in, 98
Treachery in Beatdown City, constraint in, 18–19
Turn-based game

Android: Netrunner as, 89
chess as, 88
decision-making in, 32–33

Twine gaming tool, 232–234
Twister, performative play in, 68–70
2D side view, of game world, 81

U
Uncertainty

defined, 45
games of chance and, 58–61, 75
as tool of game design, 28–31

V
Values at Play book (Flanagan and Nissenbaum), 119
Verb brainstorms, 169–170
Verbs

designing game around personal experience, 176
designing game around story, 175

Version failure, 159
Voting, in idea speed-dates, 167
Vvvvvv, constraints in, 172–173

W
Walden, played by explorers, 99–100
Way

inspiration for creating, 164–165
symbiotic cooperation in, 55
theme in, 38–40

Weenies, giving visual reference point with, 87
What

production team will be doing, 236–237
reviewing playtest results, 219

‘What if” question
conceptualization phase of iterative cycle, 110
playtest phase of iterative cycle, 112
prototype phase of iterative cycle, 110–111

When, production deadlines, 236–237
Where, reviewing playtest results, 219
Whimsical play, 62–65, 75
Who of production team, 236–237
Why, reviewing playtest results, 219
Wilson, Douglas, 171–172, 229
Wireframes, website, 138–139
The Witness, mental skill in, 55–56
World, representing, 80–81

Y
Yomi

concept of, 49
developing design values for Consentacle, 128

role in strategic fun of chess, 88

Z
Zimmerman, Eric, 11, 31, 118

	About This E-Book
	Title Page
	Copyright Page
	Praise for Games, Design and Play
	Contents at a Glance
	Contents
	Preface
	Another Book on Game Design?
	Game Design, Game Development, and Game Production
	Games By and For Everyone
	You Are What You Play

	How This Book Works
	The Beginning of Something

	Acknowledgments
	About the Authors
	Part I: Concepts
	Chapter 1. Games, Design and Play
	The Basic Elements of Play Design
	From Six Elements, Limitless Play Experiences
	Getting from Here to There
	Summary
	Exercises

	Chapter 2. Basic Game Design Tools
	Constraint
	Direct and Indirect Actions
	Goals
	Challenge
	Skill, Strategy, Chance, and Uncertainty
	Decision-Making and Feedback
	Abstraction
	Theme
	Storytelling
	Context of Play
	Summary
	Exercises

	Chapter 3. The Kinds of Play
	Competitive Play
	Cooperative Play
	Skill-Based Play
	Experience-Based Play
	Games of Chance and Uncertainty
	Whimsical Play
	Role-Playing
	Performative Play
	Expressive Play
	Simulation-Based Play
	Summary
	Exercises

	Chapter 4. The Player Experience
	Action Theory as a Framework
	The Layers of a Play Experience
	The Sensory Layer
	The Information Layer
	The Interaction Layer
	Failure
	The Frame Layer
	The Purpose Layer
	Beyond Bartle’s Player Types

	Summary
	Exercises

	Part II: Process
	Chapter 5. The Iterative Game Design Process
	The Origins of Iterative Design
	The Four Steps
	Step 1: Conceptualize
	Step 2: Prototype
	Step 3: Playtest
	Step 4: Evaluate

	A Repeated Process, Not a Single Cycle
	Embracing Failure to Succeed
	Summary
	Exercise

	Chapter 6. Design Values
	Generating Design Values
	Example: Pong Design Values

	Case Studies
	Case Study 1: thatgamecompany’s Journey
	Case Study 2: Captain Game’s Desert Golfing
	Case Study 3: Naomi Clark’s Consentacle

	Summary
	Exercises

	Chapter 7. Game Design Documentation
	The Game Design Document
	Example: Pong Design Document

	Schematics
	Integrating Schematics into the Game Design Document

	The Tracking Spreadsheet
	Overview
	For Discussion
	Task List
	Ongoing Responsibilities
	Asset List
	Completed Tasks

	Summary
	Exercise

	Chapter 8. Collaboration and Teamwork
	Roles and Responsibilities
	Alignment Versus Autonomy

	Time and Resources
	Team Agreements
	Collaboration Tools
	Running a Meeting
	The Soft Skills of Collaboration
	Resolving Differences
	Understanding Failure
	Summary

	Part III: Practice
	Chapter 9. Conceptualizing Your Game
	Generating Ideas for Your Game
	Brainstorming
	Idea Speed-Dating
	“How Might We...” Questions
	Noun-Verb-Adjective Brainstorming

	Motivations
	Designing Around the Main Thing the Player Gets to Do
	Designing Around Constraints
	Designing Around a Story
	Designing Around Personal Experiences
	Abstracting the Real World
	Designing Around the Player

	Design Values Capture Motivations
	Summary

	Chapter 10. Prototyping Your Game
	Prototypes Are Playable Questions
	Eight Kinds of Prototypes
	Paper Prototypes
	Physical Prototypes
	Playable Prototypes
	Art and Sound Prototypes
	Interface Prototypes
	Code/Tech Prototypes
	Core Game Prototypes
	Complete Game Prototypes

	Documenting Your Prototypes
	Summary

	Chapter 11. Playtesting Your Game
	Six Kinds of Playtests
	Internal Playtests
	Game Developer Playtests
	Friend and Family Playtests
	Target Audience Playtests
	New Player Playtests
	Experienced Player Playtests
	Matching Prototypes to Playtests

	Preparing for a Playtest
	Picking a Time and Place
	Planning the Playtest
	Capturing Feedback

	Running a Playtest
	Introduce
	Observe
	Listen
	Discuss

	After a Playtest
	The Difference Between Input and Feedback
	Summary

	Chapter 12. Evaluating Your Game
	Reviewing Playtest Results
	What to Think About
	Interpreting Observations
	Conceptualizing Solutions
	Review
	Incubate
	Brainstorm
	Decide
	Document
	Schedule

	Summary

	Chapter 13. Moving from Design to Production
	Case Study: The Metagame
	Case Study: Johann Sebastian Joust
	Case Study: The Path
	Case Study: Queers in Love at the End of the World
	How to Know When the Design Is Done
	Getting Ready for Production
	Summary

	Works Cited
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 13

	Glossary
	Index

